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SIRTEM: Spatially Informed Rapid Testing for Epidemic Modeling and
Response to COVID-19∗
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COVID-19 outbreak was declared a pandemic by the World Health Organization (WHO) on March 11, 2020. To minimize casualties and
the impact on the economy, various mitigation measures have being employed with the purpose to slow the spread of the infection,
such as complete lockdown, social distancing, and random testing. The key contribution of this paper is twofolds. Firstly, we present a
novel extended spatially-informed epidemic model, SIRTEM, Spatially Informed Rapid Testing for Epidemic Modeling and Response to

Covid-19, that integrates a multi-modal testing strategy considering test accuracies. Our second contribution is an optimization model
to provide a cost-effective testing strategy when multiple test types are available. The developed optimization model incorporates
realistic spatially based constraints, such as testing capacity and hospital bed limitation as well.
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1 INTRODUCTION

On December 31, 2019, the first COVID-19 outbreak was reported in Wuhan, China. Since then, the infection has spread
rapidly and a worldwide pandemic was declared by the World Health Organization (WHO) on March 11, 2020. As of
April 19, 2021, about 141.057 million cases and 3.015 million deaths have been reported [78]. Although tragic, the loss
of human life is not the only cost of this pandemic. Economists forecast that the world economy will plunge about
2.4%„3% in GDP (86.6 trillion dollars) [70]. To minimize casualties and the impact on the economy, various mitigation
measures are being employed with the purpose to slow the spread of the infection, such as complete lockdown, social
distancing, and random testing. Governments worldwide have chosen to employ these mitigation methods in different
combinations and levels depending on their cultural background, political systems, and social consensus [4]. Screening
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2 Jaejin Lee, Fahim Tasneema Azad, et al.

of the infected individuals from the uninfected susceptible population through isolation and quarantine is often enabled
by diagnostic testing. Empirical data has shown this to be an effective form of prevention [76].

Any effective action plan for stopping the spread of a virus requires quantitative understanding of the dynamical
evolution of the disease, and of the impact of policy measures on such dynamics. In fact, it is key to develop effective
models that enable the analysis of the rate of transmission of the disease, the spread at different spatial scales, and the
assessment of the effect of travel restrictions, school closures, therapeutics to manage the disease. Such models require
foundational epidemiological understanding and, importantly, a possibly large volume of diverse data. In particular,
testing can be seen as an important, and controllable, source of data at different fidelities. Diagnostic tests can be
developed with different costs and accuracy (sensitivity and specificity). Testing is fundamental to identify outbreaks,
and, if performed at reasonable scale, it can provide a snapshot of the evolution of the epidemic. Testing becomes even
more crucial in presence of a disease that has important asymptomatic spread and is highly infectious. This was the
case for Sars-CoV2. Summarizing, testing strategies should be designed with three, core, objectives:

‚ Objective 1: Obtain a faithful picture of the COVID-19 model as well as epidemic trajectory;
‚ Objective 2: Identify individuals and populations who are at risk of exposure or are already sick;
‚ Objective 3: Guide intervention efforts, such as isolation of infectious individuals, quarantine of the suspected
contacts, and minimization of the contact rates without completely disrupting the society.

Nonetheless, testing is expensive, difficult, and creating a timely and accurate test against a new and growing epidemic
is not always feasible. CDC, for example, reportedly shunned the World Health Organization (WHO) test guidelines for
COVID-19 and set out to create a more advanced test. But the test failed in the field as it correctly identified COVID-19,
but it falsely flagged other harmless viruses in the samples [54]. The testing program in Italy also created controversy:
experts at the WHO and the Italian Health Ministry argued that Lombardy had created an inflated perception of the
threat by including in case totals people who tested positive for the virus but who had not gotten sick. Other experts
argue that tracking even mild cases of the virus is essential to containing its spread [82]. Research indicates that an
individual infected with COVID-19 in the absence of symptoms could spread the virus to a susceptible population [82].
This potentially necessitates us to test individuals randomly to discriminate infected individuals without symptoms in
addition to the testing for the individuals showing COVID-19 like symptoms. “Surveillance testing” of hundreds of
people in possible hotspots helped epidemiologists in several countries tracking the spread of the epidemics before
large numbers of people turn up at hospitals [71]

Yet, the decision on the daily testing rate of random tests and the symptomatic test is an essential issue for policymakers
to balance virus spreading and testing costs. When policymakers implement a particular testing strategy, they need
to consider multi-faceted aspects and practical limitations in employing a particular testing policy. In fact, different
data collection and testing modalities and strategies available to help generating models and predicting spread/severity
of a disease, have varying costs, response times, and accuracies. For instance, accuracy of available tests can have
significant impact on the epidemic progress: When test sensitivity accuracy is low, we will not be able to separate
the infected population efficiently from the healthy population, resulting in a spike in disease spread. On the other
hand, if the specificity accuracy is low, we falsely quarantine healthy individuals. Consequently, widespread testing of
asymptomatic people has the potential of disrupting the economy and affect the care infrastructures in the presence
of tests with high rates of false positives. On the other hand, the testing strategy should account for several practical
constraints, such as the daily testing capacity, limitations for different testing types and the potential of the epidemic to
disrupt the healthcare infrastructure if we fail in identifying dangerous outbreaks. For this, we need to account for
Manuscript submitted to ACM
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1) the spatial distribution and mobility of the susceptible population, 2) the sensitivity and specificity of the tests, 3)
how quickly results are obtained, 4) the maximum number of tests administered per day, and others. Given the above
challenges, several critical questions arise:

‚ “What is the value of testing?”
‚ “Should we only test sick people for virus detection?”
‚ “How should we handle limited testing capacity?”
‚ “How much resources should be devoted to the development of highly accurate tests (low false positives, low
false negatives)?”

‚ “ Should we only use one type of test aiming at the best cost/effectiveness trade off or should we rather adopt a
non-homogeneous testing policy?”

‚ “How do we account for spatial distribution of the populations and their movements in developing testing
strategies?”

Motivated by the aforementioned questions, in this paper, we develop a spatially informed model, SIRTEM, which
couples the spatio-temporal dynamics of the COVID-19 epidemic with multiple testing modalities to solve the optimal
cost-effective multi-modal Covid-19 testing strategy problem while satisfying practical constraints.
Organization of the Paper. The remainder of the paper is organized as follows. We review the relevant literature in
section 2. Section 3 presents the overall approach with relevant models and optimizers. Sections 3.1.1-3.1.2 present the
single city and multiple city epidemiological models, respectively, while Section 3.2 presents the optimization model.
Section 4 presents the numerical analysis and Section 5 draws the conclusions.

2 RELEVANT LITERATURE

Epidemic studies generally focus on (a) predicting the progress of an epidemiological phenomenon over time (Section 2.1);
(b) analyzing the effects of mitigation policies over the spread of the disease; and (c) evaluating the effectiveness of
diagnostic testing in reducing the spread of the disease in early stages or when no vaccines are available [74]. In this
section, we will briefly review the related literature within these three areas with particular focus on COVID-19.

2.1 Epidemiological Modeling

After Bernoulli devised the first mathematical epidemiology model to estimate the mortality rate due to smallpox in
1766, a plethora of epidemiological models have been proposed with increasing presence of data driven techniques
in place of or embedded with the more traditional differential equations typically used to describe the evolution of
a disease across time and space. The review presented in Wei et al. [20] classifies epidemiological models into three
categories: (i) Mathematical Model, (ii) Complex network model, (iii) Agent based model.
Analytical Evolutionary Models. These models are implemented as systems of differential equations and can be determin-
istic or stochastic [20, 28]. The most commonly used deterministic models to date are the SEIR, SIR, and SIS approaches
and their extensions [1–3, 21, 35, 36, 43, 47, 52? ]. COVID-19 has also been studied through this lens. As an example,
quarantine and hospitalization augmented SEIR model have been proposed to investigate the dynamics of the Covid-19
outbreak in Hubei (China) [33], while a fractional order SEIR model was proposed for analyzing the spread within the
US [80]. For the class of stochastic models, an common example is the Reed-Frost method [5, 9], which uses a binomial
process to describe the transmission of the virus between two individuals. Such approach has been proposed to extend
the SEIR model in [45], focusing on the spread of Cholera. A similar approach was used in [42] to study the Ebola
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outbreak in Congo (1995). More recently, several SEIR variants were proposed to investigate the progress of COVID-19
and the effectiveness of mitigation strategies [6, 7, 13, 23, 24, 32, 46, 51, 57, 81].
Network-based Models. This class of models is traditionally adopted to understand the effect of person-to-person
interaction dynamics over the spread of the disease. According to this approach, the evolution of the disease is encoded
as a space-time graph, where the nodes represent individuals, and edges the interactions [20]. Due to the level of detail,
network models typically are not used for large scale studies due to the computational complexity.
Agent-based Models. Similar to the case of networked models, agent-based approaches focus on individual to individual
interaction and behavior (e.g., mobility, choice). This allows to analyze transmission of the virus in high resolution
and embedding the effect of individual level actions on the epidemic development. Several epidemic models of this
type have been investigated for Dengue, Syphilis, AIDS and Ebola [12, 16, 26, 29, 31, 49, 64, 68]. In the scope of the
COVID-19 pandemic, various studies have been conducted with agent-based modeling [18, 34, 37, 38, 62, 65, 69, 73, 79].
However, also in this case, only small case studies cane be conducted due to the high computational demand.

2.2 Effects of Mitigation Policies

In the early phases of a new disease, mitigation strategies are the key to attempt controlling the increase of cases [66].
Strategies normally considered include individual recommendations, community and state-level mandates such as
lockdown, social distancing, and mass testing. Different combinations of such policies have been implemented amid the
COVID-19, thus motivating research in the understanding of the efficacy of such measures in reducing the spread of
the disease [40, 59, 63]. In this regard, Chu et al. [15] investigated the effect that measures such as mask wearing, eyes
protection, and social distancing had on the reduction in cases. As part of the analysis, the authors estimated the effect
of wearing face masks, eye protection, and distancing over 1[m], was a reduction of 14.3%, 10.6%, and 10.4% in number of
infections, respectively. Eikenberry et al. [22] incorporated the effect of wearing a face mask in the SEIR-based epidemic
model, by modulating the time-varying infection rate within the SEIR model. Similarly, Ngonghala et al. [53] embedded
the effect of the face mask in the SEIR-based model, not only using a time varying infection rate, but also using control
variable to represent the the level of mask wearing thus impacting the contact rate of the SEIR model. Milne et al. [50]
devised an agent based model to simulate person to person virus transmission, thus allowing the detailed analysis of
small scale effects of social distancing. However. as previously mentioned, such approach cannot be used in the context
of large scale analysis. Kim et al. [39] investigated the effect of school closure in South Korea using a SEIR model with
population stratified by age. In this study, the authors use the confirmed cases as a proxy for the number of infected
individuals in the model. However, confirmed cases are a result of testing of a minimal percentage of the population,
while the actual count of the infected population is censored. Greenstone and Nigam [30] investigated the nationwide
social distancing effect on the mortality rate. The authors estimate the value of social distancing to $8 trillion as the
value the American population is willing to pay to decrease of COVID-19 casualties.

2.3 Effects of Diagnostic Testing

Individuating the infected individuals from the susceptible population is crucial to slow disease spread. Social distancing,
as well as lockdown measures are among the most effective, and also expensive (economically as well as socially), ways
to perform such separation. Testing can represent a less socially expensive alternative by allowing to target populations
that require isolation [44, 55, 67]. In fact, the effect of testing during the pandemic has become the focus of several
contributions. As an example, Toshikazu et al. [41] investigated the efficacy of mass testing and social distancing. The
authors analysis reveals that 80% of diagnostic testing on the population combined with 30% reduction in contact
Manuscript submitted to ACM
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Fig. 1. Our approach: spatially-informed, coupled epidemic/testing modelling and black-box optimization

rates (attainable by implementing social distancing) could halt the pandemic in Japan. The authors do not differentiate
symptomatic from randomized testing, and the work focuses on understanding the ideal extent of testing efforts.
Facundo et al. [60] studied the efficacy of quarantine and testing in terms of overall resulting economical cost. Unlike
the previous contribution, the authors consider symptomatic and randomized tests for a single testing method. Also,
they incorporate hospitalization and immunization into the simulation model. However, they do not consider the
test accuracy. However, test accuracy rose as a key aspect in evaluating effectiveness of testing based policies and
analyses [19]. Incorrect diagnoses will increase economical costs (false positives), or incidence of the disease (false
negatives). David et al. [56] proposed a cost-effective screening strategy for a 5,000 student college campus. They
showed that testing every two days with sensitivity less than 70% could keep the infected population under control.
However, extending such testing rates to a larger population could be not realistic primarily due to the lack of analysis
capabilities for accurate test whose results are produced by labs with finite capacity. Similarly, Panovska et al. [58]
provided the optimal testing strategy and analysis to reopen schools in the U.K. The authors proposed a stochastic model
that simulates the disease transmission among individuals. In addition, Wells et al. [77] investigated the possibility of
reducing the quarantine period using different testing strategies. The authors suggested that shortened quarantine
period with exit testing could be an effective alternative for 14 days full quarantine.

2.4 Contributions

In this paper, we extend the SEIR model into SIRTEM "Spatially Informed Rapid Testing for Epidemic Modeling and
Response to Covid-19" , an epidemic spread compartment model that takes into account isolation, quarantine, and
hospitalization processes, and, most prominently, multiple tests are considered with varying accuracy and costs. In
particular, we consider the test sensitivity (i.e., ability to identify positive cases - error of Type 1), and specificity (ability
to identify correctly negative cases - error of Type 2).

The SIRTEM model builds on the SEIR model, but is significantly extended to reflect testing, quarantine, and
hospitalizations. Themodel is designed to apply different testing rates for the symptomatic and asymptomatic individuals;
for instance, a higher testing rate for the symptomatic individuals could be a more effective testing strategy than

Manuscript submitted to ACM
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Fig. 2. Overview of the SIRTEM coupled epidemic/testing model (components, sub-components, and transitions) – for simplicity, the
figure ignores the spatial scope of the underlying process

applying the same testing rate to both individuals. SIRTEM is spatially-informed since it takes into account the spatial
distribution of populations as well as their non-homogeneous mixing patterns.

SIRTEM model allows the positive and negative confirmed cases to help predict the disease’s propagation. Based on
the SIRTEM model, we develop a nonlinear black-box optimization approach to help identify the best possible testing
strategy, taking account daily testing capacities and hospitals physical bed limitations, testing, hospitalization, and
quarantine costs. We separate asymptomatic and symptomatic testing, and consider multiple testing options with
different levels of cost and accuracy.

3 PROPOSED APPROACH

In this paper, we take a three-step approach to testing policy development (Figure 1): (i) we develop a spatially-informed

and coupled SIRTEM model that includes multi-modal diagnostic testing policies combined with isolation, quarantine,
hospitalization, and immunization; (ii) we propose a custom estimation algorithm to calibrate the simulation parameters
of the model – this approach exploits available information on hospitalizations, deaths, positive and negative cases
daily; and (iii) we formulate and solve the problem of optimal testing considering the economical cost of quarantine,
hospitalization, death, and testing, under constrained resources (e.g., hospital bed, testing).
Manuscript submitted to ACM



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

SIRTEM: Spatially Informed Rapid Testing for Epidemic Modeling and Response to COVID-19 7

Table 1. SIRTEM model parameters

Parameters Description
𝑡𝑝𝑖 Sensitivity of diagnostic test 𝑖
𝑡𝑛𝑖 Specificity of diagnostic test 𝑖
𝜏𝑖 Time to obtain the result for diag. test 𝑖 (days)
𝜙𝑖 Testing rate for diagnostic test 𝑖 the symptomatic population (ratio per day)
𝜙𝑎𝑖 Testing rate for diagnostic test 𝑖 the non-symptomatic population (ratio per day)
𝑡𝑝𝑠𝑒 Sensitivity of the serology test
𝑡𝑛𝑠𝑒 Specificity of the serology test
𝜏𝑠𝑒 Time to obtain the result for the serology test (days)
𝜙𝑠𝑒 Testing rate for the serology test (ratio of the relevant population per day)
𝛽 Infection rate for the susceptible population (ratio)

= transmission rate ˆ contact rate for the susceptible population
𝛽1 Infection rate for the population of individuals who are falsely presumed immune (ratio)

= transmission rate ˆ contact rate for the presumed immune population
𝑟 The ratio of the transmission rate of asymptomatic individuals to the transmission rate of symptomatic individuals
𝑝𝑒𝑟𝑎 Percentage of individuals with COVID-19 who are asymptomatic
𝑝𝑒𝑟𝑠 Percentage of individuals with COVID-19 who are symptomatic
𝜂 Incubation length (days)
𝜆𝑎 Length of recovery for asymptomatic individuals (days)
𝜆𝑠 Length of recovery for symptomatic individuals (days)
𝜆𝑞 Length of quarantine (days)
𝜆ℎ Hospitalization length (days)
ℎ Hospitalization rate (ratio of the quarantined population, per day)
𝜅 Mortality rate for symptomatic population (per day)
𝜅ℎ Mortality rate for the hospitalized individuals (per day)
𝑔 Ratio of the susceptible individuals who has fever and cough for non-COVID infections (ratio, per day)

3.1 SIRTEMModels

We first introduce the model for single city (Section 3.1.1) and then extend the model to multiple cities (Section 3.1.2).

3.1.1 Coupled Epidemic-Testing Single City Model. We first expand the standard four-state SEIR model to reflect reality
better by considering different population groups (or compartments).

Population Groups/Compartments. The model distinguishes individuals into five population groups: susceptible,
infected symptomatic, infected asymptomatic, and symptomatic but not COVID-19 infected (flu or general sick), and
falsely presumed susceptible:

‚ We define susceptible as the population that is non-infected and displaying no symptoms associated with
COVID-19.

‚ Infected symptomatic and asymptomatic are the sections of the population infected with COVID-19 who are
showing symptoms and not exhibiting symptoms, respectively.

‚ Symptomatic but not infected are the people who are displaying symptoms (flu, general sick) similar to COVID-19,
but are not infected.

‚ Falsely presumed susceptible population consists of people who have immunity from natural recovery, but
erroneously test negative to COVID-19 antibodies.

As with the standard SEIR model, an individual enters and leaves these compartments according to the relevant
transition rates and other parameters (Table 1). Different from the traditional set of dynamical equations, these transition
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rates are governed by four different processes: (a) asymptomatic testing, (b) symptomatic testing, (c) immunization, and
(d) falsely presumed susceptible process (Figure 2).

Exposure Dynamics. The exposure process is governed by the following equations:

𝑑𝐸

𝑑𝑡
“

´

𝛽 ¨ 𝑆p𝑡q ` 𝛽
1

¨ 𝐹𝑃𝐼p𝑡q

¯

¨
𝐼𝑛𝑓 𝑒𝑐𝑡𝑒𝑑p𝑡q

𝑁
´

´

𝑝𝑒𝑟𝑎 ` 𝑝𝑒𝑟𝑠

¯

¨ 𝐸p𝑡q (1)

where the total number of infected individuals at time 𝑡 is,

𝐼𝑛𝑓 𝑒𝑐𝑡𝑒𝑑p𝑡q “ 𝑟 ¨

´

𝑃𝑆p𝑡q ` 𝑃𝐴p𝑡q ` 𝐼𝐴p𝑡q `𝐴𝑇𝑁 p𝑡q

¯

` 𝐼𝑆p𝑡q ` 𝑆𝑇𝑁 p𝑡q. (2)

Above, the infection rate parameter, 𝛽 , represents the number of new daily infection produced by a single infectious
individual and it is equivalent to the product of contact rate and disease transmission rate. Equivalently, the total
number of new infected individuals will be 𝛽 ¨ 𝐼𝑛𝑓 𝑒𝑐𝑡𝑒𝑑p𝑡q ¨

𝑆p𝑡q

𝑁
, and this population will move from susceptible to

exposed, where N denotes the total population. The parameter, 𝛽
1

, represents a higher infection rate parameter, which
we apply to the falsely presumed immune individuals (FPI) (i.e., individuals that falsely test positive to antibodies).
More specifically, FPI is a recovered individuals that falsely tests positive for the serology, his/her risk is higher since
the individual will likely behave in the assumption of larger than actual protection. Finally, equation (2) shows that
asymptomatic individuals (IA(t) and ATN(t)) and individuals before symptom onset (PA(t), PS(t)) infect at 𝑟 times the
rate compared to symptomatic individuals.

Asymptomatic Testing Process. The asymptomatic testing process emulates random testing to discriminate infected
asymptomatic from the susceptible population. The asymptomatic population is divided into two groups, infected
asymptomatic and not infected (susceptible). In practice, we cannot differentiate among these two groups of individuals
without testing. Table 2 lists the sub-compartments relevant for the following equations that describe the asymptomatic
testing process:

Table 2. Sub-compartments relevant for the asymptomatic testing process

Sub-Compartment Sub-Compartment

𝑆 Susceptible population 𝐸 Pop. exposed to the virus
𝑃𝐴 Pre-asymptomatic population 𝐼𝐴 Infected pop. who are asymptomatic
𝐴𝑇𝑖 Asymp. pop. receiving diagnostic test 𝑖 𝐴𝑇𝑁 Asymptomatic pop. with negative test result
𝑄𝐴𝑃 Asymp. pop. quarantined after a test 𝑈𝑅 Pop. with unknown immunity due to unknown infection
𝐾𝑅 Pop. of known recovered individuals 𝑁𝑇𝑖 Susceptible pop. receiving diagnostic test 𝑖
𝑁𝑇𝑁 Pop. of non-infected indiv. who test negative 𝑁𝑇𝑄 Non-infected pop. quarantined due to testing error
𝐹𝑃𝐼 Pop. of indiv. falsely presumed immune 𝑃𝑆 Infected pop. who are pre-symptomatic
𝐼𝑆 Infected pop. who are symptomatic 𝑆𝑇𝑁 Symptomatic pop. who test negative (by error)

An individual exposed to the virus will proceed as an infected asymptomatic individual with 𝑝𝑒𝑟𝑎 rate; the virus will
take 𝜂 days for incubatation (during which the individual will be considered pre-asymptomatic) and after that period
the individual will be considered infected asymptomatic (assuming that s/he does not show symptoms):

𝑑𝑃𝐴

𝑑𝑡
“ 𝑝𝑒𝑟𝑎 ¨ 𝐸p𝑡q ´ 𝑃𝐴p𝑡 ´ 𝜂q (3)
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If a government implements a random test for the asymptomatic population, 𝜙𝑎𝑖 rate of IA(t) individuals get tested
with test types 𝑖 .

𝑑𝐼𝐴

𝑑𝑡
“ 𝑃𝐴p𝑡 ´ 𝜂q `𝐴𝑇𝑁 p𝑡q ´

2
ÿ

𝑖“1
𝜙𝑎𝑖 ¨ 𝐼𝐴p𝑡q ´ 𝜆 ¨ 𝐼𝐴p𝑡q (4)

Above, we assume that the 𝜆 is the rate of IA(t) individuals recover naturally:

𝑑𝑈𝑅

𝑑𝑡
“ 𝜆 ¨ 𝐼𝐴p𝑡q ` 𝜆 ¨ 𝐼𝑆p𝑡q ´𝑈𝑅p𝑡q (5)

The following equation models impact of the sensitivity, 𝑡𝑝𝑖 , and the response time, 𝜏𝑖 , of test type 𝑖:

𝑑𝐴𝑇𝑖

𝑑𝑡
“ 𝜙𝑎𝑖 ¨ 𝐼𝐴p𝑡q ´ 𝑡𝑝𝑖 ¨𝐴𝑇 p𝑡 ´ 𝜏𝑖q ´ p1 ´ 𝑡𝑝𝑖q ¨𝐴𝑇 p𝑡 ´ 𝜏𝑖q (6)

The specificity, 𝑡𝑛𝑖 , of the test impacts the false positive rate for the test:

𝑑𝑁𝑇𝑁

𝑑𝑡
“

2
ÿ

𝑖“1
p1 ´ 𝑡𝑛𝑖q ¨ 𝑁𝑇𝑖p𝑡 ´ 𝜏𝑖q ´ 𝑁𝑇𝑁 p𝑡q (7)

Once testing positive, the individual is quarantined for 𝜆𝑞 days, until recovering:

𝑑𝑄𝐴𝑃

𝑑𝑡
“

2
ÿ

𝑖“1
𝑡𝑝𝑖 ¨𝐴𝑇 p𝑡 ´ 𝜏𝑖q ´𝑄𝐴𝑃p𝑡 ´ 𝜆𝑞q (8)

𝑑𝐾𝑅

𝑑𝑡
“ 𝑄𝐴𝑃p𝑡 ´ 𝜆𝑞q ` 𝐹𝑆𝑄p𝑡 ´ 𝜆𝑞q `𝑄𝑆𝑃p𝑡 ´ 𝜆𝑞q `

2
ÿ

𝑖“1
𝑡𝑛1 ¨ 𝐻𝑇𝑖p𝑡 ´ 𝜏𝑖q (9)

Otherwise, the individual will move back to IA(t):

𝑑𝐴𝑇𝑁

𝑑𝑡
“

2
ÿ

𝑖“1
p1 ´ 𝑡𝑝𝑖q ¨𝐴𝑇 p𝑡 ´ 𝜏𝑖q ´𝐴𝑇𝑁 p𝑡q (10)

Since we cannot distinguish an infected asymptomatic and a susceptible one, random tests are being employed not only
for the infected asymptomatic but also for the susceptible ones:

𝑑𝑁𝑇𝑖

𝑑𝑡
“ 𝜙𝑎𝑖 ¨ 𝑆p𝑡q ´ 𝑡𝑛𝑖 ¨ 𝑁𝑇𝑖p𝑡 ´ 𝜏𝑖q ´ p1 ´ 𝑡𝑛𝑖q ¨ 𝑁𝑇𝑖p𝑡 ´ 𝜏𝑖q (11)

If a test result is falsely positive, a non infected susceptible individual will be falsely quarantined for 𝜆𝑞 days:

𝑑𝑁𝑇𝑄

𝑑𝑡
“

2
ÿ

𝑖“1
𝑡𝑛𝑖 ¨ 𝑁𝑇𝑖p𝑡 ´ 𝜏𝑖q ´ 𝑁𝑇𝑄p𝑡 ´ 𝜆𝑞q (12)

Otherwise, the tested individual moves to the susceptible compartment again
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Table 3. Sub-Compartments relevant for the symptomatic testing process

Sub-Compartment Sub-Compartment

𝐸 Pop. exposed to the virus 𝑃𝑆 Pre-Symptomatic population
𝐼𝑆 Infected pop. who are symptomatic 𝑆𝑇𝑖 Symptomatic pop. receiving test 𝑖
𝑆𝑇𝑁 Symptomatic pop. with negative test result 𝑄𝑆𝑃 Symp. pop. quarantined after a test
𝑈𝑅 Pop. with unknown immunity due to unknown infection 𝐾𝑅 Pop. of known recovered individuals
𝐻1 Pop. need hospitalization before a quarantine 𝐻2 Pop. need hospitalization during quarantine
𝐻𝑇𝑖 Pop receiving test 𝑖 while hospitalized 𝐷 Pop. who have not recovered from the infection (dead)
𝐹𝑆 Pop. showing flu symptoms 𝐹𝑇𝑖 Pop. with flu symptom receiving test 𝑖
𝐹𝑇𝑁 Pop. with flu symptom tested negative for COVID-19 𝐹𝑇𝑄 Pop. with flu symptom quarantined due to false positive
𝐺𝑆 Pop. with other COVID-like symptoms 𝐺𝑇𝑖 Pop. with other COVID-like symptoms reciving test 𝑖
𝐺𝑇𝑁 Pop. with other symptoms tested negative for COVID-19 𝐺𝑇𝑄 Pop. with other symptoms quarantined due to false positive

Symptomatic Testing Process. The symptomatic testing process is designed to model the testing process for individuals
who show COVID-19 like symptoms. We categorize symptomatic individuals into three populations: (a) COVID-infected
symptomatic, (b) general sick (fever, coughing), and (c) flu symptomatic. We assume that these populations can be
distinguished through diagnostic testing.

Much like the asymptomatic process discussed above, the process consists of testing, isolation, and quarantine
sub-processes. Unlike the asymptomatic process, however, the symptomatic process also includes hospitalization and
death for severe cases. The compartments presented in Table 3 along with the following differential equations define
the transitions between relevant states in the symptomatic process.

An individual exposed to the virus will proceed as an infected symptomatic individual with 𝑝𝑒𝑟𝑠 rate; the virus will
take 𝜂 days for incubatation (during which the patient is pre-symptomatic) and after that period the individual will be
considered infected symptomatic (assuming that s/he does show symptoms):

𝑑𝑃𝑆

𝑑𝑡
“ 𝑝𝑒𝑟𝑠 ¨ 𝐸p𝑡q ´ 𝑃𝑆p𝑡 ´ 𝜂q (13)

When the diagnostic tests are implemented for the symptomatic population, 𝜙𝑠𝑖 rate of infected symptomatic(IS(t))
individual get tested with test types 𝑖 . Additionally, we assume that 𝜆 rate of IS(t) individuals recover naturally, and 𝜅
and ℎ rates of IS(t) individuals are dead and hospitalized with the severe cases, respectively:

𝑑𝐼𝑆

𝑑𝑡
“ 𝑃𝑆p𝑡 ´ 𝜂q ` 𝑆𝑇𝑁 p𝑡q ´

2
ÿ

𝑖“1
𝜙𝑠𝑖 ¨ 𝐼𝑆p𝑡q ´ 𝜆 ¨ 𝐼𝑆p𝑡q ´ 𝜅 ¨ 𝐼𝑆p𝑡q ´ ℎ ¨ 𝐼𝑆p𝑡q (14)

In the following equation, 𝑡𝑝𝑖 is sensitivity, and 𝜏𝑖 , represents response time of test types i.

𝑑𝑆𝑇𝑖

𝑑𝑡
“ 𝜙𝑠𝑖 ¨ 𝐼𝑆p𝑡q ´ 𝑡𝑝𝑖 ¨ 𝑆𝑇𝑖p𝑡 ´ 𝜏𝑖q ´ p1 ´ 𝑡𝑝𝑖q ¨ 𝑆𝑇𝑖p𝑡 ´ 𝜏𝑖q (15)

Once testing positive, the individual is quarantined for 𝜆𝑞 days until recovery, as shown in equations (6) and (12).

𝑑𝑄𝑆𝑃

𝑑𝑡
“

2
ÿ

𝑖“1
𝑡𝑝1 ¨ 𝑆𝑇𝑖p𝑡 ´ 𝜏𝑖q ´𝑄𝑆𝑃p𝑡 ´ 𝜆𝑞q (16)
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𝑑𝐾𝑅

𝑑𝑡
“ 𝑄𝐴𝑃p𝑡 ´ 𝜆𝑞q ` 𝐹𝑆𝑄p𝑡 ´ 𝜆𝑞q `𝑄𝑆𝑃p𝑡 ´ 𝜆𝑞q `

2
ÿ

𝑖“1
𝑡𝑛𝑖 ¨ 𝐻𝑇𝑖p𝑡 ´ 𝜏𝑖q (17)

Otherwise, the individual moves back to IS(t) and will contribute to the virus spread:

𝑑𝑆𝑇𝑁

𝑑𝑡
“

2
ÿ

𝑖“1
p1 ´ 𝑡𝑝𝑖q ¨ 𝑆𝑇𝑖p𝑡 ´ 𝜏𝑖q ´ 𝑆𝑇𝑁 p𝑡q (18)

Assuming that 𝜆 is the rate with which infected individuals recover from the disease and are (naturally) immunized, we
have:

𝑑𝑈𝑅

𝑑𝑡
“ 𝜆 ¨ 𝐼𝐴p𝑡q ` 𝜆 ¨ 𝐼𝑆p𝑡q ´𝑈𝑅p𝑡q (19)

Here, ℎ is the rate with which individuals who were quarantined with positive test results (QSP(t)) move to the hospital.
The death rate for hospitalized individuals is 𝜅ℎ . After spending 𝜆ℎ days in the hospital, the hospitalized individuals will
take a test to check if the virus is still active and they will keep being hospitalized when the result is positive. Otherwise,
they move to the recovered compartment as described in Equation 17.

𝑑𝐻1
𝑑𝑡

“ ℎ ¨𝑄𝑆𝑃p𝑡 ´ 𝜆ℎq ` p1 ´ 𝑡𝑛1q ¨ 𝐻𝑇 1p𝑡 ´ 𝜏1q ´ 𝜅ℎ ¨ 𝐻1p𝑡q (20)

𝑑𝐻2
𝑑𝑡

“ ℎ ¨ 𝐼𝑆p𝑡 ´ 𝜆ℎq ` p1 ´ 𝑡𝑛1q ¨ 𝐻𝑇 2p𝑡 ´ 𝜏1q ´ 𝜅ℎ ¨ 𝐻2p𝑡q (21)

𝑑𝐻𝑇𝑖

𝑑𝑡
“ ¨𝐻𝑖p𝑡 ´ 𝜆ℎq ` p1 ´ 𝑡𝑛𝑖q ¨ 𝐻𝑇𝑖p𝑡 ´ 𝜏𝑖q ` 𝑡𝑛𝑖 ¨ 𝐻𝑇𝑖p𝑡 ´ 𝜏𝑖q (22)

𝑑𝐷

𝑑𝑡
“

2
ÿ

𝑖“1
𝜅ℎ ¨ 𝐻𝑖p𝑡q ` 𝜅 ¨𝑄𝑆𝑃p𝑡q ` 𝜅 ¨ 𝐼𝑆p𝑡q (23)

The following two equations leverage the 𝑓 𝑙𝑢 and 𝑔𝑠𝑖𝑐𝑘 rate parameters to describe the portion of the population which
show flu-like and general sick symptoms, such as fever and coughing, which require testing due to having symptoms
indistinguishable from COVID-19.

𝑑𝐹𝑆

𝑑𝑡
“ 𝑓 𝑙𝑢 ¨ 𝑆p𝑡q ´ 𝐹𝑆p𝑡q (24)

𝑑𝐺𝑆

𝑑𝑡
“ 𝑔𝑠𝑖𝑐𝑘 ¨ 𝑆p𝑡q ´𝐺𝑆p𝑡q (25)

Even though these individuals are not COVID-19 infected, in the case of a false positive, they will be quarantined for 𝜆𝑞
days:

𝑑𝐹𝑇𝑖

𝑑𝑡
“ 𝜙𝑠𝑖 ¨ 𝐹𝑆p𝑡q ´ 𝑡𝑛𝑖 ¨ 𝐹𝑇𝑖p𝑡 ´ 𝜏𝑖q ´ p1 ´ 𝑡𝑛𝑖q ¨ 𝐹𝑇𝑖p𝑡 ´ 𝜏𝑖q (26)

𝑑𝐹𝑇𝑄

𝑑𝑡
“

2
ÿ

𝑖“1
𝑡𝑛𝑖 ¨ 𝑁𝑇𝑖p𝑡 ´ 𝜏𝑖q ´ 𝐹𝑇𝑄p𝑡 ´ 𝜆𝑞q (27)

𝑑𝐺𝑇𝑖

𝑑𝑡
“ 𝜙𝑠𝑖 ¨𝐺𝑆p𝑡q ´ 𝑡𝑛𝑖 ¨𝐺𝑇𝑖p𝑡 ´ 𝜏𝑖q ´ p1 ´ 𝑡𝑛𝑖q ¨𝐺𝑇𝑖p𝑡 ´ 𝜏𝑖q (28)
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Table 4. Sub-compartments relevant for the process through which individuals obtain immunity

Sub-Compartment Sub-Compartment

𝐾𝑅 Pop. of known recovered indiviudals 𝐼𝑀 Pop. of individuals with immunity
𝑆𝑇 𝐼 Pop. of immune indiv. receving serology (anti-body) test 𝑆𝐼𝐼 Pop. of not-immune indiv. receiving serology test
𝐹𝑃𝐼 Pop. of individuals who are falsely presumed being immune

𝑑𝐺𝑇𝑄

𝑑𝑡
“

2
ÿ

𝑖“1
𝑡𝑛𝑖 ¨𝐺𝑇𝑖p𝑡 ´ 𝜏𝑖q ´𝐺𝑇𝑄p𝑡 ´ 𝜆𝑞q (29)

Patients who are true negative return to the susceptible population:

𝑑𝐺𝑇𝑁

𝑑𝑡
“

2
ÿ

𝑖“1
p1 ´ 𝑡𝑛𝑖q ¨𝐺𝑇𝑖p𝑡 ´ 𝜏𝑖q ´𝐺𝑇𝑁 p𝑡q (30)

𝑑𝐹𝑇𝑁

𝑑𝑡
“

2
ÿ

𝑖“1
p1 ´ 𝑡𝑛𝑖q ¨ 𝐹𝑇𝑖p𝑡 ´ 𝜏𝑖q ´ 𝐹𝑇𝑁 p𝑡q (31)

Immunity Process. The role of the immunity process is to model how individuals who recover from COVID-19 obtain
immunity against reinfection for a certain period of time. This model is governed with sub-compartments presented in
Table 4 along with the following equations:

Any person who recovers from the disease (KR(t)), will have immunity for 𝛾 days.

𝑑𝐼𝑀

𝑑𝑡
“ 𝐾𝑅p𝑡q ´ 𝐼𝑀p𝑡 ´ 𝛾q ´ 𝜙𝑠𝑒 ¨ 𝐼𝑀p𝑡q ` 𝑡𝑝𝑠𝑒 ¨ 𝑆𝑇 𝐼p𝑡 ´ 𝜏𝑠𝑒q (32)

In the above equation, the recovered individuals are divided into two groups: (a) individuals having immunity and those
who do not get sufficient immunity. We assume that the government will administer serology tests at a predetermined
rate,𝜙𝑠𝑒 , for both groups, IM(t) & FPI(t), since we cannot discriminate an individual having immunity from those who
lost immunity without a serology test. These tests are imperfect, much like the diagnostic tests. We use accuracy of
𝑡𝑝𝑠𝑒 and 𝑡𝑛𝑠𝑒 for sensitivity and specificity, respectively. The test takes 𝜏𝑠𝑒 days to provide the result:

𝑑𝑆𝑇 𝐼

𝑑𝑡
“ 𝜙𝑠𝑒 ¨ 𝐼𝑀p𝑡q ´ 𝑡𝑝𝑠𝑒 ¨ 𝑆𝑇 𝐼p𝑡 ´ 𝜏𝑠𝑒q ´ p1 ´ 𝑡𝑝𝑠𝑒q ¨ 𝑆𝑇 𝐼p𝑡 ´ 𝜏𝑠𝑒q (33)

𝑑𝑆𝐼𝐼

𝑑𝑡
“ 𝜙𝑠𝑒 ¨ 𝐹𝑃𝐼p𝑡q ´ 𝑡𝑛𝑠𝑒 ¨ 𝐹𝑃𝐼p𝑡 ´ 𝜏𝑠𝑒q ´ p1 ´ 𝑡𝑛𝑠𝑒q ¨ 𝐹𝑃𝐼p𝑡 ´ 𝜏𝑠𝑒q (34)

Note that a group of individuals may be Falsely Presumed Immune (FPI(t)) for various reasons: (a) the individual
may lose immunity (IM(t-𝛾 )), (b,c) some individuals may be quarantined after false positive result with flu symptoms
(FSQ(t-𝜆𝑞 ), after a general sickness (GSQ(t-𝜆𝑞 )), or (d) after a testing error ((NTQ(t-𝜆𝑞 )).

𝑑𝐹𝑃𝐼

𝑑𝑡
“ 𝐼𝑀p𝑡 ´ 𝛾q `𝐺𝑆𝑄p𝑡 ´ 𝜆𝑞q ` 𝐹𝑆𝑄p𝑡 ´ 𝜆𝑞q ` 𝑁𝑇𝑄p𝑡 ´ 𝜆𝑞q ´ 𝛽

1

¨ 𝐹𝑃𝐼p𝑡q (35)

For these individuals, we apply higher infection rate (𝛽1 ą 𝛽), because these individuals are likely to socialize more
than pure susceptible ones.
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Table 5. Sub-compartments relevant for individuals who are falsely presumed susceptible

Sub-Compartment Sub-Compartment

𝑈𝑅 Pop. with unknown immunity due to unknown infection 𝐹𝑃𝑆 Pop. falsely presumed susceptible
𝐹𝑆𝑇𝑖 Pop. falsely presumed susceptible receiving diag. test 𝑖 𝐹𝑆𝑇𝑁 Pop. falsely presumed susceptible who test negative
𝐹𝑆𝑄 Pop. falsely presumed susceptible (wrongly) quarantined

Falsely Presumed Susceptible Process. The falsely presumed susceptible process is designed to consider those indi-
viduals recovered naturally from the COVID-19. These individuals have immunity against the disease, but they think
themselves susceptible. In order to model this group of individuals, we consider the sub-compartments listed in Table 5,
along with the following equations:

Unknown recovered individuals, who had COVID-19 but recovered naturally, have immunity against COVID-19:

𝑑𝑈𝑅

𝑑𝑡
“ 𝜆 ¨

´

𝐼𝐴p𝑡q ` 𝐼𝑆p𝑡q

¯

´𝑈𝑅p𝑡q (36)

These individuals move to the falsely presume susceptible(FPS) since they regard themselves susceptible:

𝑑𝐹𝑃𝑆

𝑑𝑡
“ 𝑈𝑅p𝑡q ` 𝐹𝑆𝑇𝑁 p𝑡q ` p1 ´ 𝑡𝑝𝑠𝑒q ¨ 𝑆𝑇 𝐼p𝑡 ´ 𝜏𝑠𝑒q ´ 𝐹𝑃𝑆p𝑡 ´ 𝛾q ´

2
ÿ

𝑖“1
𝜙𝑎𝑖 ¨ 𝐹𝑃𝑆p𝑡q (37)

Note that these individuals will lose immunity after 𝛾 days and move to the pure susceptible compartment.
While they are falsely presumed susceptible, these individuals will be subject to regular random testing strategies:

𝑑𝐹𝑆𝑇𝑖

𝑑𝑡
“ 𝜙𝑎𝑖 ¨ 𝐹𝑃𝑆p𝑡q ´ 𝑡𝑛𝑖 ¨ 𝐹𝑆𝑇𝑖p𝑡 ´ 𝜏𝑖q ´ p1 ´ 𝑡𝑛𝑖q ¨ 𝐹𝑆𝑇𝑖p𝑡 ´ 𝜏𝑖q (38)

𝐹𝑆𝑇𝑁

𝑑𝑡
“

2
ÿ

𝑖“1
p1 ´ 𝑡𝑛𝑖q ¨ 𝐹𝑆𝑇 1p𝑡 ´ 𝜏𝑖q ´ 𝐹𝑆𝑇𝑁 p𝑡q (39)

𝑑𝐹𝑆𝑄

𝑑𝑡
“

2
ÿ

𝑖“1
𝑡𝑛𝑖 ¨ 𝐹𝑆𝑇𝑖p𝑡 ´ 𝜏𝑖q ´ 𝐹𝑆𝑄p𝑡 ´ 𝜆𝑞q (40)

As we see above, if the test is falsely positive, individuals are quarantined for 𝜆𝑞 days. Otherwise, they stay in FPS(t).

3.1.2 Spatially Informed SIRTEM Model. We note that the coupled epidemic/testing model described so far is not
spatially informed. In particular, it assumes one group of individuals, whose interactions are defined through a single
mixing rate. Moreover, the model further ignores the possibility of different geographic locations applying different
testing policies. To account for these, we therefore extend the model with spatially indexed compartments along with
spatially informed parameters and mixing rates. Let S “ t𝑠1, . . . , 𝑠𝑀u be a set of spatial locations.

‚ Spatially indexed model compartments: Tables 2 through 5 list the compartments of the base model. In the spatially
informed model, each of these components are spatially indexed: for example, each spatial location 𝑠𝑖 has a
corresponding susceptible population, 𝑆p𝑖q, and an exposed population 𝐸p𝑖q.

‚ Spatially informed mixing rates: The infection rate parameter, 𝛽 , in Table 1 includes two components: transmission
rate, which (ignoring the local mutations of the disease) is a spatially-insensitive parameter, and the contact/mixing
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Table 6. Average daily interactions per day per person in different contexts during different waves of the epidemic [25]

Start End Work Home Other
Wave 0 22-Mar-20 9-Apr-20 0.25 2 0
Wave 1 10-Apr-20 4-May-20 0.5 2 1

– 5-May-20 16-Jun-20 0.625 2 1
Wave 2 17-Jun-20 23-Jun-20 0.75 2 1

– 24-Jun-20 10-Sep-20 1 2 1.5
Wave 3 11-Sep-20 26-Sep-20 1.25 2 2

rate, 𝜇 P r0, 1s, which depends on the behaviors of local populations, and therefore is spatial-sensitive:

@𝑠𝑖PS 𝛽p𝑖q “ 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 ˆ 𝜇p𝑖q .

Here 𝜇 is the likelihood of each individual in the population to interact with other individuals in the same
population.
The above equation, however, would fail to take into account potential mixing among spatially distributed
population groups due to mobility patterns (such as daily commute between spatial regions). We, therefore,
extend the above model as follows:

@𝑠𝑖 ,𝑠 𝑗PS 𝛽p𝑖, 𝑗q “ 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 ˆ 𝜇p𝑖, 𝑗q,

where 𝜇p𝑖, 𝑗q P r0, 1s denotes the likelihood of an individual in population at spatial location 𝑠𝑖 to interact with an
individuals in the spatial location 𝑠 𝑗 . Consequently, 𝛽p𝑖, 𝑗q models the transmission of the disease from the from
one population to another due to the underlying mobility patterns. We, therefore, revise the part of the model
that governs the exposure process as follows:

𝑑𝐸p𝑖q

𝑑𝑡
“

¨

˝

ÿ

𝑠 𝑗PS

´

𝛽p𝑖, 𝑗q ¨ 𝑆p𝑖qp𝑡q ` 𝛽
1

p𝑖, 𝑗q
¨ 𝐹𝑃𝐼p𝑖qp𝑡q

¯

¨ 𝐼𝑛𝑓 𝑒𝑐𝑡𝑒𝑑p𝑗qp𝑡q

˛

‚´

´

𝑝𝑒𝑟𝑎 ` 𝑝𝑒𝑟𝑠

¯

¨ 𝐸p𝑖qp𝑡q

where

𝐼𝑛𝑓 𝑒𝑐𝑡𝑒𝑑p𝑖qp𝑡q “ 𝑟 ¨

´

𝑃𝑆p𝑖qp𝑡q ` 𝐼𝐴p𝑖qp𝑡q ` 𝑃𝐴p𝑡q `𝐴𝑇𝑁p𝑖qp𝑡q

¯

` 𝐼𝑆p𝑖qp𝑡q ` 𝑆𝑇𝑁p𝑖qp𝑡q.

Above, as described earlier, the parameter, 𝛽
1

, represents the larger infection coefficient that applies to the falsely
presumed immunity individuals who potentially have large mixing rates than the susceptible population. The
value of 𝑟 in contrast takes into account the fact that the 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 parameter is lower for asymptomatic
and pre-symptomatic individuals than the fully symptomatic individuals.

Obtaining the Mixing Rates. In this paper, we obtain the mixing rate 𝜇p𝑖, 𝑗q relying on two distinct information
sources: [25] provides the rate with which people interact with other at home, work, and other activities during the
COVID-19 pandemic. More specifically, this data source provides data about how the number of interactions per day
per person changed over time during different waves of the epidemic 6. While this data does not include any spatial
differentiation, we combine this data with the work commute data available at [11] to partition the mixing rate into to
Manuscript submitted to ACM
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three spatially differentiated components:

𝜇p𝑖, 𝑗q “ ℎp𝑖, 𝑗q `𝑤p𝑖, 𝑗q ` 𝑜p𝑖, 𝑗q,

where ℎp𝑖, 𝑗q is the rate with which infected individuals in city 𝑖 interact with susceptible people in city 𝑗 in the home

context,𝑤p𝑖, 𝑗q is the rate with which infected individuals in city 𝑖 interact with susceptible people in city 𝑗 in the work
context, and 𝑜p𝑖, 𝑗q is the rate with which infected individuals in city 𝑗 interact with susceptible people in city 𝑖 in all
other contexts:

‚ At-home mixing: In order to compute the rate of interactions in the home context, we make the simplifying
assumption that, at home, individuals only interact with those individuals living in the same city; i.e.,

ℎp𝑖, 𝑗q “ H 𝑖 𝑓 𝑖 ‰ 𝑗 .

Given this assumption, we can obtain the at-home mixing rate, ℎp𝑖,𝑖q, at city 𝑖 as

ℎp𝑖,𝑖q “
𝑛𝑢𝑚_ℎ𝑜𝑚𝑒_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑝𝑜𝑝𝑖
,

where 𝑛𝑢𝑚_ℎ𝑜𝑚𝑒_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the number of per day, per person at-home interactions reported in Table 6 and
𝑝𝑜𝑝𝑖 is the population of the city 𝑖 .

‚ At-work mixing: In order to compute the rate of interactions in the work context, we rely on the commute rate
data available from [11]. More specifically,

𝑤p𝑖, 𝑗q “

ˆ

𝑛𝑢𝑚_𝑤𝑜𝑟𝑘_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠
𝑝𝑜𝑝 𝑗

ˆ
𝑊𝑗Ñ𝑖

𝑊𝑗

˙

`

ˆ

𝑛𝑢𝑚_𝑤𝑜𝑟𝑘_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠
𝑝𝑜𝑝𝑖

ˆ
𝑊𝑖Ñ𝑗

ř

ℎ𝑊ℎÑ𝑗

˙

.

Above, the first term indicates the interaction rate due to individuals traveling from city 𝑗 to city 𝑖 for work
related reasons: more specifically,𝑊𝑗 is the number of workers living in city 𝑗 and𝑊𝑗Ñ𝑖 is the number of those
that commute to city 𝑖 for work.
The second term, on the other hand, is the interaction rate due to individuals traveling from city 𝑖 to city 𝑗 for
work:𝑊𝑖Ñ𝑗 is the number of people that commute from city 𝑖 to city 𝑗 for work, while

ř

ℎ𝑊ℎÑ𝑗 is the number
of individuals working in city 𝑗 .

‚ Other mixing: To obtain non-home, non-work mixing rates, we assume that the rate interaction among individuals
is inversely proportional with the square of their distance; i.e.,

𝑜p𝑖, 𝑗q “
𝑛𝑢𝑚_𝑜𝑡ℎ𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑜𝑝𝑖
ˆ

𝑍p𝑖, 𝑗q
ř

ℎ 𝑍pℎ,𝑗q

,

where 𝑛𝑢𝑚_𝑜𝑡ℎ𝑒𝑟_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the number of non-home, non-work related interactions reported in Table 6
and 𝑍p𝑖, 𝑗q is the population of city 𝑖 normalized with the square of the distance between cities 𝑖 and 𝑗 :

𝑍p𝑖, 𝑗q “
𝑝𝑜𝑝𝑖

𝛿2
p𝑖, 𝑗q

.

We obtained the distance 𝛿p𝑖, 𝑗q between cities 𝑖 and 𝑗 from [48] and approximated 𝛿p𝑖,𝑖q as𝑚𝑖𝑛ℎ
´

𝛿p𝑖,ℎq

¯

{2.

3.2 Optimal Testing

Weuse the epidemic/testingmodel, SIRTEM, to develop an optimization problem for identifying optimal testing strategies:
The objective of the problem 𝑃 is to minimize the total economic cost, consisting of testing (𝑓1), hospitalization (𝑓2), and
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quarantine (𝑓3) costs, of the COVID-19, subject to resource (testing and hospital capacity) limitations. At each time
frame 𝑡 , We apply rolling horizon optimization formulation(one time frame look ahead) to prevent locally optimized
solution at each time frame as following:

𝑃𝑡 : min𝑥“p𝜔𝑡 ,𝜔𝑡`1q 𝑧
𝑜
𝑡 “

3
ÿ

𝑘“1
p𝑓 𝑡
𝑘

p𝜔𝑡 q ` 𝑓
𝑡`1
𝑘

p𝜔𝑡`1qq (41)

s.to

𝑍𝑐1,𝑑 : 𝑔𝑇 1
𝑑

p𝜔p𝑡qq ď 𝑇 1 @𝑑 P D p𝑡q (42)

𝑍𝑐2,𝑑 : 𝑔𝑇 1
𝑑

p𝜔p𝑡 ` 1qq ď 𝑇 1 @𝑑 P D p𝑡 ` 1q (43)

𝑍𝑐3,𝑑 : 𝑔𝑇 2
𝑑

p𝜔p𝑡qq ď 𝑇 2 @𝑑 P D p𝑡q (44)

𝑍𝑐4,𝑑 : 𝑔𝑇 2
𝑑

p𝜔p𝑡 ` 1qq ď 𝑇 2 @𝑑 P D p𝑡 ` 1q (45)

𝑍𝑐5,𝑑 : 𝐻𝑑 p𝜔𝑡 q ď 𝐻 @𝑑 P D p𝑡q (46)

𝑍𝑐6,𝑑 : 𝐻𝑑 p𝜔𝑡`1q ď 𝐻 @𝑑 P D p𝑡 ` 1q , (47)

The optimization problem 𝑃𝑡 , is solved in a rolling horizon manner for 𝑡 “ 1, . . . ,𝑇 ´ 1 using a lookahead of
one time period. Herein, a time period 𝑡 refers to a month, while 𝑑 is day, and the set D p𝑡q represents the number
of days in month 𝑡 . At each time period 𝑡 , we choose the testing rates to apply. Therefore, the decision variables
𝜔𝑡 “ p𝜙𝑡

𝑎1, 𝜙
𝑡
𝑎2, 𝜙

𝑡
𝑠1, 𝜙

𝑡
𝑠2q, where p𝜙𝑡

𝑎1, 𝜙
𝑡
𝑎2, 𝜙

𝑡
𝑠1, 𝜙

𝑡
𝑠2q represent daily asymptomatic and symptomatic testing rate for test

type 1 and 2 in time period 𝑡 . These decision variables are real numbers in the range of [0,1]. The objective in (41),
together with the constraints in equations (42)-(47) are blackbox functions and, therefore, they require simulation to be
evaluated. Specifically, 𝑔𝑇 1

𝑑
, 𝑔𝑇 2
𝑑

, represent the daily total number of tests of type 1 and 2 administered, respectively, to
be compared to the total daily testing capacity 𝑇1,𝑇2. There are D p𝑡q of these constraints for each month 𝑡 , and for
each test type. in constraints (46)-(47), 𝐻𝑑 denotes the hospital beds used daily, to be compared to the daily available
hospital bed capacity, 𝐻 . There are D p𝑡q of these constraints for each time period 𝑡 .
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We used a Constrained Bayesian optimization with rolling horizon approach to solve the given problem. The sampling
algorithm was taken from [27], and it is reported as Step 1 in Algorithm 1, below.

Algorithm 1: Bayesian Optimization for Optimal Testing.

Result:
␣

𝜔˚
𝑡

(𝑇

𝑡“1 “
␣

p𝜙˚
𝑎1, 𝜙

˚
𝑎2, 𝜙

˚
𝑠1, 𝜙

˚
𝑠2q Ă 𝑅4

(𝑇

𝑡“1
Input: Decision space Ω Ă R8, hospital bed limit 𝐻 , maximum number of daily tests for test type 1 and 2,

p𝑇 1,𝑇 2q, number of initial sample 𝑛0, total budget 𝐵;

for 𝑡 ă 𝑇 ´ 1 do
Initialization:
Best value so far 𝑍˚,𝑜

𝑡 Ð 8, set of sampled points 𝑆𝑡0 Ð H;

Sample 𝑛0 locations
!

𝑥𝜏𝑡 “

´

𝜔𝜏𝑡 , 𝜔
𝜏
𝑡`1

¯)𝑛0

𝜏“1
, 𝑆𝑡0 Ð 𝑆𝑡0 Y

!

𝑥𝜏𝑡 “

´

𝜔𝜏𝑡 , 𝜔
𝜏
𝑡`1

¯)𝑛0

𝜏“1
;

for 𝜏 “ 1, . . . , 𝑛0 do
Run SIRTEM and evaluate the objective function 𝑧𝑜

`

𝑥𝜏𝑡

˘

in eqn. (41), and the constraints
𝑧𝑐𝑟,𝑡

`

𝑥𝜏𝑡

˘

, 𝑟 “ 1, . . . , 𝑅 from eqn. (42)-(47);

if 𝑧𝑜
`

𝑥𝜏𝑡

˘

ă 𝑍˚
𝑡 , and 𝑥

𝜏
𝑡 is feasible then

𝑍˚
𝑡 Ð 𝑥𝜏𝑡 , 𝑥

˚
𝑡 “ 𝑥𝜏𝑡 ;

end

end
Estimate a Gaussian process model for the objective and the constraints:
𝑍𝑜𝑡 „ 𝐺𝑃

`

𝜇𝑜 p𝑥𝑡 q , 𝑠
2,𝑜 p𝑥𝑡 q |

␣

𝑥𝜏𝑡 , 𝑧
𝑜
`

𝑥𝜏𝑡

˘(𝑛0
𝜏“1

˘

, obtain the predictor p𝑍𝑜 p𝑥𝑡 q , @𝑥𝑡 ;

𝑍𝑐𝑟,𝑡 „ 𝐺𝑃

´

𝜇𝑐𝑟 p𝑥𝑡 q , 𝑠
2,𝑐
𝑟 p𝑥𝑡 q |

␣

𝑥𝜏𝑡 , 𝑧
𝑐
𝑟

`

𝑥𝜏𝑡

˘(𝑛0
𝜏“1

¯

, obtain the predictor p𝑍𝑐𝑟 p𝑥𝑡 q , @𝑥𝑡 , 𝑟 “ 1, . . . , 𝑅;

𝑏 Ð 𝑛0 ` 1;

while 𝑏 ď 𝐵 do
Step 1: Sample 𝑥𝑏𝑡 P argmax𝑥𝑡 𝐶𝐸𝐼 p𝑥𝑡 q “ 𝐸𝐼 p𝑥𝑡 q ¨

ś𝑅
𝑟“1 r𝑃 p𝑍𝑐𝑟 p𝑥𝑡 q P C𝑟 qs, where 𝑃 p𝑍𝑐𝑟 p𝑥𝑡 q R C𝑟 q is

the probability that the 𝑟 th constraint is violated, while
𝐸𝐼 p𝑥𝑡 q “ 𝐸

”

max
´

0,Δ𝑍𝑜 p𝑥𝑡 qΦ
´

Δ𝑍𝑜 p𝑥𝑡 q

𝑠𝑜p𝑥𝑡 q

¯

` 𝑠𝑜 p𝑥𝑡 q𝜙

´

Δ𝑍𝑜 p𝑥𝑡 q

𝑠𝑜p𝑥𝑡 q

¯¯ı

, and Δ𝑍𝑜 p𝑥𝑡 q “ 𝑍˚
𝑡 ´ p𝑍𝑜p𝑥𝑡 q;

𝑆 Ð 𝑆 Y 𝑥𝑏𝑡 ;
Step 3: Evaluation
Run SIRTEM and evaluate the objective function 𝑧𝑜

´

𝑥𝑏𝑡

¯

in eqn. (41), and the constraints

𝑧𝑐𝑟,𝑡

´

𝑥𝑏𝑡

¯

, 𝑟 “ 1, . . . , 𝑅 from eqn. (42)-(47);

if 𝑧𝑜
´

𝑥𝑏𝑡

¯

ă 𝑍˚
𝑡 , and 𝑥

𝑏
𝑡 is feasible then

𝑍˚
𝑡 Ð 𝑥𝑏𝑡 , 𝑥

˚
𝑡 “ 𝑥𝑏𝑡 ;

end
Step 4: Models Update
𝑍𝑜𝑡 „ 𝐺𝑃

´

𝜇𝑜 p𝑥𝑡 q , 𝑠
2,𝑜 p𝑥𝑡 q |

␣

𝑥𝜏𝑡 , 𝑧
𝑜
`

𝑥𝜏𝑡

˘(𝑏

𝜏“1

¯

, obtain the predictor p𝑍𝑜 p𝑥𝑡 q , @𝑥𝑡 ;

𝑍𝑐𝑟,𝑡 „ 𝐺𝑃

´

𝜇𝑐𝑟 p𝑥𝑡 q , 𝑠
2,𝑐
𝑟 p𝑥𝑡 q |

␣

𝑥𝜏𝑡 , 𝑧
𝑐
𝑟

`

𝑥𝜏𝑡

˘(𝑏

𝜏“1

¯

, obtain the predictor p𝑍𝑐𝑟 p𝑥𝑡 q , @𝑥𝑡 , 𝑟 “ 1, . . . , 𝑅;

𝑏 Ð 𝑏 ` 1;

end

end
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4 EVALUATION

4.1 Single City Model Validation

4.1.1 Parameter Calibration. For a given geographic location (this could be county, state, city), we calibrate the SIRTEM
model by estimating three critical parameters, infection rate (𝛽), testing rate (𝜙𝑠 ), and the general symptomatic rate (𝑔)
using published data of confirmed positive and negative cases (Table 7). We made the following assumptions:

‚ There is only one diagnostic test and one serology test available;
‚ Flu and general symptomatic-related compartments are collapsed into one, and the underlying rate (𝑔) is assumed
to be constant over time.

We obtain estimation of these three parameters by solving an Given the complexity of the simulator, we cannot optimize
the likelihood in closed form. Instead, we defined an algorithm to iteratively improve the discrepancy between the daily
positive and negative cases predicted against the real data.

p𝑃q : min
𝜔PΩ

𝑍 p𝜔q “
1
2

»

–

1
𝑑

ř𝑑
𝑡“1p𝑦

p`q

𝑡 |𝜔q ´ 𝑦
p`q

𝑡 q2q

s𝑦
p`q

𝑡

`

1
𝑑

ř𝑑
𝑡“1p𝑦

p´q

𝑡 |𝜔q ´ 𝑦
p´q

𝑡 q2

s𝑦
p´q

𝑡

fi

fl (48)

In equation (48),𝑦p`q

𝑡 ,𝑦p´q

𝑡 are the SIRTEM predictions for positive and negative cases at time 𝑡 (day), respectively.𝑦p`q

𝑡 ,
𝑦

p´q

𝑡 denote confirmed positive and negative cases obtained from public sources [61]. Each error term is normalized
using the average confirmed cases, s𝑦p`q

𝑡 and s𝑦
p´q

𝑡 , respectively.
The changes of the two key parameters, the relative infection rate 𝛽 , and the diagnostic testing rate 𝜙 (assuming

only one test), over time to follow a functional form. More specifically, we assume both to be autoregressive, and we
use an AR(2) model for their calibration. As a result, for each week 𝑘 , we have:

𝛽𝑘 “ 𝑎1 ¨ 𝛽𝑘´1 ` 𝑎2 ¨ 𝛽2 ` 𝑒𝑏
𝑘

(49)

𝜙𝑘 “ 𝑏1 ¨ 𝜙𝑘´1 ` 𝑏2 ¨ 𝜙𝑘´2 ` 𝑒𝑠
𝑘

(50)

@𝑘 𝑔𝑘 “ 𝑔. (51)

Under these assumptions, the decision vector 𝜔 “ ra, b, 𝑔s, requiring to estimate a, b, both 2-dimensional vectors, and
the parameter 𝑔. This results in a 5-dimensional decision problem, which we treat as a black box optimization, and use
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Fig. 3. Numbers of COVID-19 Infections and Positive and Negative test results for different values of 𝛽

𝐾 weeks of data to calibrate. Specifically, we designed an iterative procedure for the optimization of the autoregressive
parameters in (49)-(50) and 𝑔. The approach is summarized in Algorithm 2.

Algorithm 2: Calibration Algorithm for a, b, 𝑔.

Result: 5 dimensional coefficient vector 𝜔̃˚ “

´

𝒂̃˚, 𝒃̃
˚
, 𝑔˚

¯

P R5 and 𝜷̃
˚
, 𝝓̃

˚ using eqn. (49)-(50)

Initialize a0 Ă R2, b0 Ă R2, 𝑔0 P R, 𝑍˚ “ 8

ℎ Ð 1;
Set aℎ “ a0, bℎ “ b0, 𝑔ℎ “ 𝑔0

while ℎ ď 𝐻 do
Step1 : Use AR(2) eqn. (49)-(50) to determine the SIRTEM parameters 𝜷pℎq, 𝝓pℎq from aℎ, bℎ ;

Step2 : Run SIRTEM for 𝐾 weeks and obtain the daily estimates
´

𝑦
p`q

𝑡 , 𝑦
p´q

𝑡

¯𝐾ˆ7

𝑡“1
, use training data

´

𝑦
p`q

𝑡 , 𝑦
p´q

𝑡

¯𝐾ˆ7

𝑡“1
and calculate 𝑍p𝜔ℎq using eqn. (48);

Step 3: Update the incumbent;

if 𝑍p𝜔ℎq ă 𝑍˚ then
𝜔̃˚ Ð 𝜔ℎ ;

𝑍˚ Ð 𝑍p𝜔ℎq;

end
Step 3: Build the surrogate for the error function
𝑍 p𝜔q „ 𝐺𝑃

´

𝜇 p𝜔q , 𝑠2 p𝜔q | t𝜔𝜏 “ ra𝜏 , b𝜏 , 𝑔𝜏 s , 𝑧 p𝜔𝜏 qu
ℎ
𝜏“1

¯

using Gaussian process regression (GP), and

obtain the predictor p𝑍 p𝜔q , @𝜔 P Ω;
Step 4: Sample the next location that maximizes the expected improvement (EI) given the predictor p𝑍 :
𝜔ℎ`1 P argmax𝜔PΩ 𝐸𝐼

´

p𝑍 p𝜔q

¯

“ 𝐸

”

max
´

0,Δ𝑍 p𝜔qΦ
´

Δ𝑍 p𝜔q

𝑠p𝜔q

¯

` 𝑠 p𝜔q𝜙

´

Δ𝑍 p𝜔q

𝑠p𝜔q

¯¯ı

, where

Δ𝑍 p𝜔q “ 𝑍˚ ´ p𝑍p𝜔q;

ℎ Ð ℎ ` 1;

end
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Table 7. Default values for various SIRTEM model parameters

Parameter Description Values Reference
𝑡𝑝1 Sensitivity of diagnostic test 0.75 [19, 72]
𝑡𝑛1 Specificity of the diagnostic test 0.95 [72]
𝑡𝑝𝑠𝑒 Sensitivity of the serology test 0.84 [8]
𝑡𝑛𝑠𝑒 Specificity of the serology test 0.97 [8]
𝜏1 Time to result for diagnostic test 3days Assumption
𝜏𝑠𝑒 Time to result for the serology test 5days Assumption
𝜙1 Diagnostic testing rate for symptomatic individuals Estimated
𝜙𝑎1 Diagnostic testing rate for non-symptomatic individuals 0 Assumption
𝜙𝑠𝑒 Serology Test rate 0.01 Assumption
𝛽 Infection rate for the susceptible pop. Estimated
𝛽1 Inf. rate for falsely presumed immune pop. (ratio) 1.2¨𝛽 Assumption
𝑟 Ratio of transmission rates for asympt. population against sympt. population 0.51 [10]
𝑝𝑒𝑟𝑎 Percentage of ind. with COVID-19 who are asymptomatic 0.16 [10]
𝑝𝑒𝑟𝑠 Percentage of ind. with COVID-19 who are symptomatic 0.84 [10]
𝜂 Incubation length (days) 3.2 days [10]
𝜆𝑎 Length of recovery for asymptomatic ind. (days) 3.5 days [10]
𝜆𝑠 Length of recovery for symptomatic ind. (days) 7 days [10]
𝜆𝑞 Length of quarantine (days) 14 days [14]
h hospitalization rate (ratio of quarantined pop, per day) 0.06 [17]
𝜆ℎ Hospitalization length (days) 6 days [14]
𝜅 Mortality rate for symptomatic pop. (per day) 0.0088 [10]
𝜅ℎ Mortality rate for hospitalized individuals (per day) 0.074 [17]
𝑔 Ratio of susc. who have fever for non COVID infections (ratio, per day) Estimated
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Fig. 4. Numbers of COVID-19 Infections, Positive and Negative test results for different values of 𝜙𝑠1
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Fig. 5. Numbers of COVID-19 Infections, Positive and Negative cases for different values of 𝑔

Impact of the Model Parameters. Before considering specific US states, we investigate the impact of the various
key model parameters on the progression of the COVID-19 epidemic. For this purpose, we consider a state with total
population of 7 million and start the epidemic with 10 symptomatic and 10 asymptomatic individuals. We simulate the
epidemic under 180 days.

Impact of 𝛽 on COVID-19 Progression. Figure 3 shows how the infection rate, 𝛽 affects the positive & negative
cases. As expected, a higher infection rate, 𝛽 , results in a larger number of COVID-19 infected individuals as shown in
Figure 3(a). This in turn results in larger numbers of positive and negative test results as shown in Figures 3(b) and (c).
Here, the increase in the negative cases is due to the imperfection in the diagnostic test.

Impact of 𝜙𝑠1 on COVID-19 Progression. A higher testing rate, 𝜙𝑠1, would indicate that the authorities are actively
trying to find COVID-19 infected individuals from the population, which is likely to increase positive test results.
However, a strong testing campaign would decrease the infection itself, which in turn would push the positive test cases
down. We study this complex relationship in Figure 4 (a). As we see in Figure 4(b), as a result of this, a higher testing
rate is able to slow the epidemic progress but does not significantly impact the peak positive test results. Additionally, a
higher testing rate also increases the number of negative test results for a fixed general sick rate, 𝑔 (Figure 4(c)).

Impact of 𝑔 on COVID-19 Progression. General sick rate, 𝑔, contributes to increased negative cases because a higher
general sick rate means more individuals show symptoms (coughing, fever) but are not COVID-19 infected. As seen in
Figure 5(c), the gap between the negative cases for different values of 𝑔 diminishes after 110 days; this is largely due to
significant drops in the false negative cases.

Table 8. Populations of the four states considered in the case study

State Population

Arizona 7.3 million
Florida 21.5 million

Minnesota 5.6 million
Wisconsin 5.8 million
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Fig. 6. Incidence numbers for 4 U.S. states

4.1.2 Case Studies with Four U.S. Cities. We next compare the prediction results of the proposed model with calibrated
model parameters against the published confirmed case data for four U.S. states, Arizona, Florida, Wisconsin, and
Minnesota. The model parameters are calibrated relying on the parameter values presented in Table 7 obtained from
various sources, including recent research results and CDC published data. Table 8 and Figure 6 show the populations
and the weekly moving averages of reported positive and negative cases of the four states considered in the case
study [17].

Arizona and Florida have seen two waves of case growth during July and December. In contrast, Minnesota and
Wisconsin kept the epidemic under control until September, but suffered from rapid growth of cases during the second
wave of the pandemic in December 2020. We use these confirmed cases to calibrate the three key parameters of the
epidemic for each state by solving the optimization problem reported in Section 4.1.1. The results are presented in
Figure 7 and Table 9: as we see here, the model predicts the reported positive cases very accurately for the southern
states, Arizona and Florida.
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Table 9. Normalized mean squared error for the 4 U.S states

State 𝑦1 𝑦2
1
𝑑

ř𝑑
𝑡“1p𝑓 1𝑡´𝑦1𝑡 q2

𝑦1

1
𝑑

ř𝑑
𝑡“1p𝑓 2𝑡´𝑦2𝑡 q2

𝑦2
1
2

„

1
𝑑

ř𝑑
𝑡“1p𝑓 1𝑡´𝑦1𝑡 q2

𝑦1
`

1
𝑑

ř𝑑
𝑡“1p𝑓 2𝑡´𝑦2𝑡 q2

𝑦2

ȷ

Arizona 1937.1 7975.8 0.295 0.264 0.2797
Florida 4427.4 24559.4 0.3227 0.2185 0.2706

Wisconsin 1752.9 7738.8 0.325 0.343 0.334
Minnesota 1417.7 9222.6 0.5201 0.2305 0.3753
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Fig. 7. Model prediction results for the four U.S, states in this case study
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The prediction, especially, for the negative test results is somewhat off for the northern states, Minnesota and
Wisconsin. This is apparently because the general symptomatic rate was assumed to be constant through out the
simulation, which may not be less a valid assumption for the colder states in the north.

As we see in Figures 7(a) and (c), in Arizona and Florida, the first major hike of the infection rate, 𝛽 , follows soon
after the governments’ lifting of the stay-home orders in May. We see that while 𝛽 dropped fast as people in these States
panicked with the rapid increase of the positive case numbers, soon after the value of the 𝛽 parameter started a slower
but consistent creep up as the population started suffering from social distancing fatigue. The negative cases for these
two states, reported in Figures 7(b) and (c), are also predicted quite accurately; in fact, they follow the the testing rates
(reported in (Figures 7(a) and (b)) closely): the more testing done, the higher numbers of negative cases are reported.

In contrast to Arizona and Florida, Wisconsin and Minnesota managed the epidemic better until September. Unfortu-
nately, the infection rate, 𝛽 , in both of these states do see a rapid increase roughly 1 to 1.5 month after lifting of the stay
home order, as seen in Figures 7(e) and (g). Similar to Arizona and Florida, the model negative cases (Figures 7(f) and
(h)) follow the predicted testing rates; but the overall fit with the published negative cases is not as strong, presumably
due to less stable general symptomatic rates in these two colder Northern states.

4.2 Optimal Testing Policies

In this section, we present the optimization result with single area model (i.e., 𝑐 “ 1) to investigate the relationship
among testing policy, cost, and other parameters. In the results reported in this section, we consider various scenarios
where two alternative tests, with different accuracies, are being deployed:

‚ Test #1: This is a relatively more accurate (high sensitivity, 0.75, and specificity, 0.95) test, with correspondingly
high cost, $50.

‚ Test #2: This is a cheaper and less accurate test. In particular, we varied test sensitivity between 0.50 and 0.75,
specificity between 0.70 and 0.95, and cost between 1 and 50,

For the test problem setting, we sampled 50 cases of test set with latin hypercube sampling Detailed parameter values
obtained through sampling are shown in the appendix. We note that the optimization problem is solved Bayesian
Optimization technique with inequality constraint [27] More specifically, we considered a 10 month period, with the
first 2 months marked as the “early”, the last 2 months marked as the “late”, and the middle 6 months marked as the
“active” period of the epidemic. For each scenario, we have computed the cost optimal deployment strategy and in the
rest of this section we present the key outcomes from this set of experiments.
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Fig. 8. The impact of the accuracy of the alternative test on the testing rates (X-axis: Accuracy; Y-Axis: Testing rate)
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Fig. 9. The impact of accuracy of the alternative test on the testing rate trade-off at different phases of the epidemic
(X-axis: Accuracy; Y-Axis: Testing rate)
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Fig. 10. Impact of accuracy of the alternative test on the quarantine costs (X-axis: Accuracy; Y-Axis: Quarantine cost)
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(a) Test 2 sensitivity vs. Hospitalization cost.
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(b) Test 2 specificity vs. Hospitalization cost.

Fig. 11. Impact of accuracy of the alternative test on hospitalization costs (X-axis: Accuracy; Y-Axis: Hospitalization cost)

Impact of Accuracy of the Alternative Test on the Testing Rates. In Figure 8, we plot four charts depicting the
impact of the accuracy of the Test 2 on the testing rates for both Tests 1 and 2. As we see in Figures 8(a) and (b) as the
accuracy of Test 2 increases, this translates into lesser use of Test 1 – considering that Test 2 is cheaper, this is expected.
We also see in Figures 8(c) and (d) that as the accuracy of Test 2 increases, a larger portion of the population is tested
with the cheaper test, Test 2. This result is also confirmed in Figure 9, where we see that the percentage of test of Type
2 increases with increasing sensitivity and selectivity during all phases of the epidemic.
Impact of Accuracy of the Alternative Test on the Quarantine and Hospitalization Rates. In Figures 10 and 11,
we consider the impact of accuracy of the alternative test on the quarantine and hospitalization costs. As we see in
Figures 10(a) and (b), the sensitivity of the Test 2 has only minimal impact on the quarantine costs; in contrast, improved
specificity of Test 2 has a strong impact on reductions on the quarantine rates. As we see in Figure 11, on the other
Manuscript submitted to ACM
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Fig. 12. The impact of accuracy of the alternative test on the percentage of asymptomatic tests run

hand, the accuracy of Test 2 have almost no impact on the hospitalization (while more accurate (especially specific)
tests tend to reduce the quarantine costs, the trend is quite weak as indicated by a large p-value).
Impact of the Accuracy of the Alternative Test on the Percentage of Asymptomatic Tests Run. As we see in
Figures 12(a,b,c) if the cheaper test, Test 2, is highly sensitive, it raises the ratio of the symptomatic testing (as opposed
to the asymptomatic testing) done during the early stages of the epidemic – the accuracy of the test, however, does
not have an impact on the relative symptomatic vs. asymptomatic testing rates during the active and late stages if the
epidemic. The specificity of Test 2 also promotes symptomatic testing as opposed to asymptomatic testing, but this time
during both early and late phases of the epidemic – see Figures 12(d,e,f). Once again, during the active phase of the
epidemic, the accuracy of the test does not have a significant impact on the balance of symptomatic vs. asymptomatic
testing rates.
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Fig. 13. The impact of (a,b,c) unit quarantine and (d,e,f) hospitalization costs on the choice of Test 2

Impact of the Unit Quarantine and Hospitalization Costs on the use of Test 2. In Figure 13, we consider the
impact of the unit quarantine and hospitalization costs on the use of the cheaper Test 2, as opposed to the more
expensive Test 1. As we see in the figure, during the early and late phases of the epidemic, larger unit quarantine and
hospitalization costs favor the use of more expensive and accurate Test 1. The interesting observation, on the other
hand, is that during the active phase of the epidemic, on the other hand, the quarantine and hospitalization unit costs
has no discernible impact on the choice of accurate and expensive Test 1 versus less-accurate and cheaper Test 2.

4.3 Multi-City Epidemic Dynamics

We next use SIRTEM to investigate the multi-city dynamics, with intra- and inter-city mixing. In particular, we consider
11 cities/regions1 in Maricopa county, Arizona, under home, work, and other mixing as described in Section 3.1.2.
Figure 14 provides an overview of the average mixing rates for all phases of the epidemic reported in Table 6 against
the size of the population. As expected, the mixing rate is generally inversely correlated with the population size of the
city – the larger the city, the less likelihood for any pair of individuals to meet (note that the chart does not explicitly
show the cross-city mixing rates).

Once again, we consider a scenario where there are two diagnostic tests and a serology test. The high accuracy test
has sensitivity 0.75 and specificity 0.95. The low accuracy test has sensitivity 0.65 and specificity 0.85. For both tests, we
consider the testing rate, 𝜙 , to be 0.01 for asymptomatic population and 0.2 for symptomatic population. The model
also includes an accurate serology test with the test rate, 𝜙 , value of 0.01.

In Figures 15 and 16, we investigate the impact of various key parameters on the multi-city epidemic dynamics. In
particular, we consider two distinct per-contact transmission rates 0.05 and 0.1 for COVID-19 (roughly covering the
range of values reported in the literature) and consider initial infected population sizes of „ 80 (the reported cases
1We selected the 10 largest cities in Maricopa county, Arizona, with respect to the population size and worker movement and merged the remaining small
cities under a single region label, "Others". For mixing rate computations, the distance of this aggregate region to a given city has been approximated as
half of the maximum distance of the city to all the cities in the aggregate region.
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Fig. 14. Per-city mixing rate vs. population for Maricopa County cities: the mixing rate is generally inversely correlated with the popu-
lation size of the city (the larger the city, the less likelihood for any pair of individuals to meet) (X-axis: mixing rate; Y-Axis: Population)

on 03/22/2020) [75] and „ 400, assuming that the number of real cases in the population is 5ˆ those of the reported
infections. The Y-axis in the charts denote the level of exposed individuals before the per-day exposure rate crests in
the population; i.e., when the epidemic starts to decline. We denote this as the exposure at epidemic decline or EED. Note
that, in the SIRTEM model, exposed individuals develop symptomatic or asymptomatic COVID-19 – therefore, this is
also the level of the infected individuals in the population before the eopidemic starts to decline.

As we see in Figure 15, the EED rate is generally between 35% and 65%, with the population size being highly
correlated with EED. We see in the charts that, in general, the larger the population, the higher the EED; the correlation,
however, is not perfect due to variations in work-related inter-city mixing. In these charts, we also see that, as expected,
a lower per-contact transmission rate (Figure 15(b)) results in a lower EED, especially for smaller cities. As expected, an
overall higher mixing rate also results in a larger EED (Figure 15(c)). Interestingly, on the other hand, a higher initial
population does not necessarily result in a larger EED (Figure 15(d)) – while the disease grows faster in the population,
the EED is not significantly impacted by the size of the initial infected population.

Finally, Figure 16 shows the average impact of work-related movement (as a ratio of the cities’ own populations) to
the EED rate. As we see here, some cities (such as Tempe) have relatively large work-related movement considering
their own populations, whereas others (such as Mesa) have a much lower work-related movement as a ratio of the
population. As we see in the figure, even during the lockdowns, the work-related movements within and across cities
has a slight, but generally positive impact on the EED of the epidemic.

5 CONCLUSIONS

Epidemic testing strategies are designed with three complementary objectives: (a) Obtaining a faithful picture of the
COVID-19 model as well as epidemic trajectory; (b) identifying individuals and populations who are at risk of exposure
or are already sick; and (c) guiding intervention efforts, such as isolation of infectious individuals, quarantining of
suspected contacts, and minimization go contact rates without completely disrupting the society. To achieve these goals,
the testing strategy should account for several practical constraints, such as the daily testing capacity, limitations for
different testing types and the potential of the epidemic to disrupt the healthcare infrastructure if we fail in identifying
dangerous outbreaks. For this, we need to account for the spatial distribution and mobility of the susceptible population
as well as the sensitivity and specificity of the available tests. In particular, testing can be a costly process especially
during the onset of an epidemic and accuracy of available tests can have significant impact on the epidemic progress:
When test sensitivity accuracy is low, we will not be able to separate the infected population efficiently from the healthy
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(a) 𝑡 “ 0.1, 𝑖 “ 82
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(b) 𝑡 “ 0.05, 𝑖 “ 82
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(c) 𝑡 “ 0.1, 𝑖 “ 82, high mixing
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(d) 𝑡 “ 0.1, 𝑖 “ 430

Fig. 15. Population vs. the level (EED) of exposed individuals before the per-day exposure rate crests in the population. In these
charts, 𝑡 denotes the per-contact transmission rate of the disease and 𝑖 denotes the size of the initial population who are sick in the
Maricopa county; the default mixing rates are the lock-down mixing rates described in Table 6 in Section 3.1.2, whereas "high mix"
corresponds to a scenario with weaker lockdown where the entire simulation is ran under 𝑤𝑜𝑟𝑘 “ 1.25, ℎ𝑜𝑚𝑒 “ 2, and 𝑜𝑡ℎ𝑒𝑟 “ 2
(X-axis: mixing rate; Y-Axis: percent exposure)
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Fig. 16. Work related movement vs. the level (EED) of exposed individuals before the per-day exposure rate crests
in the population; in this chart, per-contact transmission rate is 0.05 whereas the initial infected population is 82
(X-axis: work movement/population; Y-Axis: percent exposure)

population, resulting in a spike in disease spread. On the other hand, if the specificity accuracy is low, we can falsely
quarantine healthy individuals. In this paper, we presented a novel spatially-informed epidemic model, SIRTEM (for
Manuscript submitted to ACM
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“Spatially Informed Rapid Testing for Epidemic Modeling”) that integrates multi-accuracy testing strategies, along with
quarantine and hospitalization processes. The model is coupled with an optimization model that incorporates spatially
based testing and hospitalization resource constraints. We presented extensive experiments that shows the utility of
SIRTEM and the associated optimization model in both single-city and multi-city scenarios.
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6 APPENDICES

Case Cap.T1 Cap.T2 Max H.Bed Sen.T1 Sen.T2 Spe. T1 Spe.T2 Co.T1 Co.T2 Q.Cost H.Cost
Case 1 24,349 26,000 1,024 0.75 0.71 0.95 0.81 50 18 30 1,603
Case 2 12,050 26,894 1,143 0.75 0.67 0.95 0.82 50 7 163 4,268
Case 3 21,986 63,310 1,235 0.75 0.65 0.95 0.76 50 8 141 3,818
Case 4 20,431 47,689 1,657 0.75 0.75 0.95 0.72 50 50 199 4,975
Case 5 16,127 36,959 1,398 0.75 0.63 0.95 0.86 50 47 4 1,071
Case 6 17,978 25,328 1,256 0.75 0.61 0.95 0.71 50 47 16 1,321
Case 7 22,551 46,142 1,474 0.75 0.66 0.95 0.74 50 1 171 4,414
Case 8 12,889 24,399 1,699 0.75 0.71 0.95 0.73 50 23 104 3,081
Case 9 24,519 53,270 1,705 0.75 0.55 0.95 0.92 50 29 79 2,585
Case 10 20,811 40,944 1,815 0.75 0.53 0.95 0.87 50 40 127 3,536
Case 11 19,303 48,640 1,934 0.75 0.74 0.95 0.73 50 16 48 1,962
Case 12 16,879 37,890 1,854 0.75 0.72 0.95 0.75 50 35 64 2,289
Case 13 20,730 43,578 1,449 0.75 0.69 0.95 0.86 50 18 13 1,267
Case 14 15,017 24,136 1,210 0.75 0.58 0.95 0.79 50 32 193 4,868
Case 15 22,957 48,826 1,485 0.75 0.52 0.95 0.71 50 14 151 4,012
Case 16 15,407 16,719 1,861 0.75 0.52 0.95 0.75 50 41 25 1,504
Case 17 15,400 20,159 1,518 0.75 0.70 0.95 0.90 50 22 130 3,598
Case 18 22,158 45,124 1,324 0.75 0.59 0.95 0.77 50 16 115 3,300
Case 19 14,058 38,234 1,559 0.75 0.67 0.95 0.89 50 8 95 2,892
Case 20 11,461 15,159 1,400 0.75 0.70 0.95 0.78 50 33 91 2,826
Case 21 19,790 35,043 1,270 0.75 0.64 0.95 0.85 50 20 101 3,025
Case 22 11,655 15,934 1,997 0.75 0.62 0.95 0.92 50 4 183 4,665
Case 23 18,159 44,931 1,959 0.75 0.72 0.95 0.89 50 25 97 2,930
Case 24 18,495 26,854 1,835 0.75 0.60 0.95 0.80 50 1 7 1,132
Case 25 14,494 16,408 1,779 0.75 0.57 0.95 0.79 50 3 57 2,142
Case 26 20,160 24,698 1,784 0.75 0.50 0.95 0.70 50 30 117 3,332
Case 27 13,409 39,921 1,636 0.75 0.73 0.95 0.91 50 38 165 4,291
Case 28 14,675 43,221 1,172 0.75 0.66 0.95 0.78 50 11 60 2,204
Case 29 19,278 53,500 1,918 0.75 0.60 0.95 0.87 50 43 68 2,370
Case 30 16,940 42,896 1,284 0.75 0.64 0.95 0.76 50 14 22 1,448
Case 31 22,794 28,839 1,973 0.75 0.56 0.95 0.90 50 38 187 4,742
Case 32 10,340 29,210 1,362 0.75 0.55 0.95 0.83 50 10 110 3,202
Case 33 12,300 22,461 1,616 0.75 0.54 0.95 0.82 50 26 158 4,164
Case 34 10,091 26,331 1,669 0.75 0.74 0.95 0.84 50 10 146 3,922
Case 35 18,806 22,485 1,097 0.75 0.63 0.95 0.72 50 24 175 4,505

Table 10. The parameter setting for Single City Model(case 1-35)
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Case Cap.T1 Cap.T2 Max H.Bed Sen.T1 Sen.T2 Spe.T1 Spe.T2 Co.T1 Co.T2 Q.Cost H.Cost
Case 36 10,731 16,884 1,056 0.75 0.59 0.95 0.85 50 24 134 3,690
Case 37 15,722 25,842 1,307 0.75 0.58 0.95 0.80 50 27 35 1,691
Case 38 17,323 25,779 1,101 0.75 0.53 0.95 0.88 50 46 82 2,646
Case 39 23,376 60,585 1,585 0.75 0.68 0.95 0.77 50 43 43 1,861
Case 40 21,544 41,739 1,340 0.75 0.73 0.95 0.81 50 32 9 1,190
Case 41 13,037 20,024 1,528 0.75 0.51 0.95 0.88 50 49 48 1,954
Case 42 17,662 32,822 1,008 0.75 0.68 0.95 0.94 50 35 53 2,050
Case 43 21,269 51,610 1,124 0.75 0.57 0.95 0.91 50 5 39 1,778
Case 44 12,522 21,463 1,732 0.75 0.62 0.95 0.95 50 4 190 4,800
Case 45 24,978 59,681 1,064 0.75 0.69 0.95 0.94 50 44 156 4,111
Case 46 23,789 41,232 1,434 0.75 0.56 0.95 0.83 50 20 177 4,547
Case 47 11,112 11,314 1,189 0.75 0.61 0.95 0.74 50 13 138 3,754
Case 48 23,873 69,407 1,742 0.75 0.51 0.95 0.93 50 40 87 2,749
Case 49 16,370 43,315 1,567 0.75 0.54 0.95 0.93 50 30 124 3,474
Case 50 13,873 38,073 1,898 0.75 0.65 0.95 0.84 50 36 74 2,480

Table 11. The parameter setting for Single City Model(case 36-50)
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