Towards Quality Aware Crowdsourced Road Sensing for Smart Cities

Lead PI: Chunming Qiao, Institution: University at Buffalo (SUNY) Award Type: <u>IRG-2</u>, Solicitation Year: <u>FY2017</u>

Principal Research Investigators	Community Partners
 <u>Chunming Qiao, University at Buffalo (SUNY)</u> <u>Lu Su, University at Buffalo</u> Jing Gao, CSE, University at Buffalo Adel W. Sadek, Civil, University at Buffalo Alex Anas, Economics, University at Buffalo 	 Niagara International Transportation Technology Coalition (NITTEC) Niagara Frontier Transportation Authority (NFTA) Erie County Department of Public Works

Project Overview

Project Vision

- QuicRoad: a Quality-of-Infromation (QoI)aware, crowdsourced road sensing system, fusing from:
 - Smartphones (GPS, accelerometer, compass, camera, etc).
 - Social media, probe vehicles and other sources
- Goal: To make the acquisition and dissemination of road/traffic condition more accurate, efficient, and timely so as to
 - Improve drivers' driving safety, efficiency, and comfort.
 - Support authorities' policy making in traffic planning and operations.

Project Overview

Use-Inspired Research

- Improve driving safety under inclement weather conditions (e.g. snows or icy rains):
 - Timely detection of poor road and traffic condition
- Deal with the high deployment cost of specialized sensors or probe vehicles:
- Work with local transportation authorities and agencies who are interested in developing crowdsourced road sensing systems.

Fundamental Research Contributions

- Integrates both technological and social research
 - technological research: a novel QoI aware information integration framework:
 - jointly optimize the estimation of the QoI of various sources, their fusion and the decision-making process.
 - social research: whether and how the proposed QuicRoad system would change the social behavior of the travelers?
 - Once they are provided with the road/traffic condition information

Project Update

- We develop a deep learning framework that can predict traffic conditions with limited road sensing data that are temporally sparse and unevenly distributed across regions.
 - Collect GPS data from 150+ NFTA buses and use them to estimate and predict traffic condition in Buffalo City.
 - Visualize the estimated/predicted traffic condition on Google map.
- We propose a crowd sensing system that can provide **spot-level availability** in a parking lot by analyzing the behavior of the drivers using their smartphone data.
 - Leverages smartphone sensors to infer parking spot searching trajectory and the final destination of the user.
 - Take into account the variance in different drivers' parking behaviors when aggregating their data.
- We develop a crowdsourced road geometry estimation system that can leverage vehicle-carried smartphone's sensory data to estimate various road geometric features, such as road grade, cross slope, and super-elevation.

Project Evolution

- In this project, we are working with our partners to collect road and traffic data using their operated **buses/shuttles**.
- Our initial plan is to install an app on the smartphones of bus drivers and collect their smartphone sensor data.
- However, our partners do not allow their bus drivers to use smartphone when driving.
- Due to the **budget limit**, we cannot purchase and install unattended smartphones on a large number of buses/shuttles.
- To achieve larger scale of data collection, we obtained the access to the **built-in GPS devices** of buses/shuttles, and make use of their GPS data to estimate and predict traffic condition.

Evaluating Project Impact on Communities

- We plan to integrate our crowdsourced road sensing system into the **NITTEC app** (<u>https://www.nittec.org/travel_resources/nittec_mobile_app/</u>), which provides users with customized real-time traveler information in the **Buffalo-Niagara region**.
- By enhancing NITTEC app with two-way information flows between the server and app users, we will be able to not only collect data from users' smartphones, but also enable users to visualize estimated/predicted traffic/road condition on their smartphones.
- To evaluate the impact of our system, we will measure the change in the number of NITTEC app users, and collect their feedback about our crowd sensing system.

Anticipated outcomes & success measures for next year

- Make use of video stream from roadside traffic cameras operated by our partners to estimate traffic condition of a broader area.
 - **Combine** the GPS and video information to achieve more accurate traffic condition estimation and prediction.
- Integrate our crowdsourced road sensing system into the NITTEC app (<u>https://www.nittec.org/travel_resources/nittec_mobile_app/</u>), which provides users with customized real-time traveler information in the Buffalo-Niagara region.
 - Collect data from users' smartphones.
 - Visualize estimated/predicted traffic/road condition on the NITTEC app.