2021 NSF SMART AND CONNECTED COMMUNITIES PI MEETING

Data Informed Modeling and Correct-by-Design Control Protocols for Personal Mobility in Intelligent Urban Transportation Systems NSF 1736582 Lillian Ratliff, University of Washington IRG-2, FY 2017

Principal Investigators

• Lillian Ratliff¹, Behcet Acikmese¹, Samuel Coogan², Juan Matute³

¹University of Washington, Seattle; ²Georgia Institute of Technology; ³University of California, Los Angeles

Community Partners

 SDOT, LADOT, and Business Improvement Areas in Seattle, LA, Santa Monica

Project Overview: Unified Approach to Parking, Ride-Sharing, and Traffic Flow

Overview: Rich data streams available through collaborators are being leveraged to learn **data-informed models** and **correct-by-design policies** such as demand-based pricing for parking and traffic light control.

Data-informed stochastic dynamical system models of mobility including parking, ride-sharing, personal vehicles

Correct-by-design policy synthesis using formal methods, convex optimization, and certifiable learning algorithms

Formal verification and validation of algorithms via rigorous simulation and a series of living lab experiments.

Project Update: Significant Accomplishments

Intelligently incentivizing individual decisionmaking behavior to reach global objectives e.g., demand-based tolls or variable ridesharing pricing

• application: redistribution of ride-share drivers

- Modelling the competitive behavior and population trend of ride-share drivers.
- Ride-share driver cost = fare earning + utility cost + congestion cost + toll/incentive.

Project Update: Significant Accomplishments

Elucidate the connection between the propagation of error in individual routing decisions to deviation in population-level traffic outcome from optimal traffic equilibrium

Alleviating Manhattan ride-share-induced congestion through adaptively tolling
 driver fares

Anticipated outcomes and successes in the next year

Expected research outcomes:

- Leverage existing data sets and machine learning machinery to develop multi-agent learning algorithms.
- Apply incentive design techniques to improve average efficiency in highly congested traffic networks.
- Work with PNNL to develop auction mechanisms for flex zones in curbside markets.

Broadening participation outcomes:
Undergrad researchers from the NSF funded UW STARS program for under-represented and minority students
REU students developing augmented reality visualization tool

