In the US, agricultural drainage infrastructure benefits >22.6 Mha of cropland and is valued at ~$100B. As a proportion of total croplands, drained croplands produce a disproportionately large amount of grain but also release a disproportionately large amount of eutrophying nutrients to aquatic ecosystems. Drainage systems include individually-owned field drains that depend on the function of community-owned main drains. Climate change and agricultural intensification are causing farmers to increase the extent and intensity of drainage leading to a pressing need to balance productivity, profitability, and environmental quality when making drainage decisions. Further, because drainage systems include individually-owned and community-owned drains, decision-making involves complex techno-economic social issues together with understanding biophysical processes and requires balancing the needs of individual farmers, drainage communities, and surrounding regions. This project will develop an integrated decision-making platform to facilitate community decision making for precise prediction and management of drainage effects on water flow, crop production, farm net returns, and nutrient loss. The platform data will be made possible by new agricultural sensors and robots, innovations in behavioral economics and analytics tools. Development of the drainage decision-making platform will be guided by farmer stakeholders—including, the Iowa and Illinois Drainage Districts Associations, a national-level agricultural drainage management coalition, and directly with farmers—forming a continuous learning environment across scientists and farmers that fosters adoption of new technologies and transfer of the research process to the next generation of scientists, engineers, and agricultural professionals.
The project will build upon a suite of biophysical and social science advances in multiple areas, including bioinspired robotic snake sensors, in-situ soil nutrient sensors, computational modeling, and socioeconomics. The snake sensors will navigate through agricultural drainage networks to generate a high spatial resolution data stream about flow rates and nitrate concentrations throughout the belowground network. The soil sensors will enable continuous monitoring of nitrate dynamics. Process-based ecohydrological models, subsurface water transport models, and multiple spatiotemporal sensor outputs will be integrated to obtain high-resolution information about distributions of water and nitrate. Biophysical scenario analyses will assist decision-making for different agricultural management scenarios to balance resource use efficiency, profitability, and environmental performance. Socioeconomic science innovations will be integrated by learning how current systems are managed in the context of various heterogeneities across individuals and drainage districts, such as demographics, farm size, and presence of wetlands, and how new information provided by the proposed infrastructure interacts with human incentives and choices and consequent policy making.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Abstract
Liang Dong
Core Area(s): Plant sensors, Environmental sensors, Agricultural sensors, Biomedical sensors, Sustainability, MEMS, Semiconductors, Nanotechnology, and Micro-optics.
Performance Period: 10/01/2021 - 09/30/2025
Institution: Iowa State University
Award Number: 2125484
Core Areas:
Water, Energy, and Food,
Food Security and Agriculture
Project Material
Posters