Matching for Peer Support: Exploring Algorithmic Matching for Online Mental Health Communities

Abstract

Online mental health communities (OMHCs) have emerged in recent years as an effective and accessible way to obtain peer support, filling crucial gaps of traditional mental health resources. However, the mechanisms for users to find relationships that fulfill their needs and capabilities in these communities are highly underdeveloped. Using a mixed-methods approach of user interviews and behavioral log analysis on 7Cups.com, we explore central challenges in finding adequate peer relationships in online support platforms and how algorithmic matching can alleviate many of these issues. We measure the impact of using qualities like gender and age in purposeful matching to improve member experiences, with especially salient results for users belonging to vulnerable populations. Lastly, we note key considerations for designing matching systems in the online mental health context, such as the necessity for better moderation to avoid potential harassment behaviors exacerbated by algorithmic matching. Our findings yield key insights into current user experiences in OMHCs as well as design implications for building matching systems in the future for OMHCs.

Year of Publication
2022
Journal
Proceedings of the ACM on Human-Computer Interaction
Volume
6
Start Page
1
Issue
CSCW2
Number of Pages
37
Date Published
11
ISSN Number
2573-0142