Adaptive Reduced Rank Regression

Abstract

We study the low rank regression problem y = Mx + ε, where x and y are d1 and d2 dimensional vectors respectively. We consider the extreme high-dimensional setting where the number of observations n is less than d1 + d2. Existing algorithms are designed for settings where n is typically as large as rank(M)(d1+d2). This work provides an efficient algorithm which only involves two SVD, and establishes statistical guarantees on its performance. The algorithm decouples the problem by first estimating the precision matrix of the features, and then solving the matrix de-noising problem.

Year of Publication
2020
Conference Name
Advances in neural information processing systems
Date Published
01