Z. Zhu

First name
Z.
Last name
Zhu
Wang, X., Liu, J., Tang, H., Zhu, Z., & Seiple, W. H. (2023). An AI-enabled Annotation Platform for Storefront Accessibility and Localization. Journal on Technology and Persons With Disabilities, 11, 19. Retrieved from https://par.nsf.gov/biblio/10440677
Wu, Y., Vo, H., Gong, J., & Zhu, Z. (2021). UnityPIC: Unity Point-Cloud Interactive Core. In Parallel graphics and visualisation. http://doi.org/10.2312/pgv20211044
Zhu, Z., Nair, V., Olmschenk, G., & Seiple, W. H. (2021). ASSIST: Assistive Sensor Solutions for Independent and Safe Travel of Blind and Visually Impaired People. In IJCAI AI for Social Good Workshop. Retrieved from https://par.nsf.gov/biblio/10286824
Chang, Y., Chen, J., Franklin, T., Zhang, L., Ruci, A., Tang, H., & Zhu, Z. (2020). Multimodal Information Integration for Indoor Navigation Using a Smartphone. In IRI2020 - The 21st IEEE International Conference on Information Reuse and Integration for Data Science (p. 8). http://doi.org/10.1109/IRI49571.2020.00017
Zhu, Z., Gong, J., Feeley, C., Vo, H., Tang, H., Ruci, A., … Wu, Z. Y. (2020). SAT-Hub: Smart and Accessible Transportation Hub for Assistive Navigation and Facility Management. In Harvard CRCS Workshop on AI for Social Good. Retrieved from https://par.nsf.gov/biblio/10185779
Olmschenk, G., Chen, J., Tang, H., & Zhu, Z. (2019). Dense Crowd Counting Convolutional Neural Networks with Minimal Data using Semi-Supervised Dual-Goal Generative Adversarial Networks. In IEEE Conference on Computer Vision and Pattern Recognition: Learning with Imperfect Data Workshop (p. 8). Retrieved from https://par.nsf.gov/biblio/10110611
Nair, V., Budhai, M., Olmschenk, G., Seiple, W. H., & Zhu, Z. (2019). ASSIST: Personalized Indoor Navigation via Multimodal Sensors and High-Level Semantic Information. In Leal-Taixé L., Roth S. (eds) Computer Vision – ECCV 2018 Workshops. ECCV 2018. Lecture Notes in Computer Science (Vol. 11134, p. 16). http://doi.org/10.1007/978-3-030-11024-6_9
Nair, V., Tsangouri, C., Xiao, B., Olmschenk, G., Seiple, W. H., & Zhu, Z. (2018). A Hybrid Indoor Positioning System for Blind and Visually Impaired Using Bluetooth and Google Tango. Journal on Technology and Persons With Disabilities, 6, 21. Retrieved from https://par.nsf.gov/biblio/10065143